{{get_dataset_fail}}




{{section.text}} {{section.text}} {{section.text}} {{section.text}} {{dataset.name}}


We have previously proposed two distinct molecular mechanisms by which SCL binds its targets in hematopoiesis; either by direct contact with specific DNA sequences or by indirect recruitment through interaction with other proteins. We have established that direct DNA binding is the major non-redundant mechanism SCL exerts in red cells. A DNA-binding mutant form of SCL (SCLRER) had detrimental effect on erythropoiesis in vivo. To extend these data to a molecular and mechanistic level, we have set out to identify the genomic sequences bound by SCL in vivo in erythroid precursors; we performed anti-SCL ChIP assays on immature, Ter119- erythroid cell populations isolated from day E12.5 wild-type (SCLWT/WT) fetal livers followed by ultra-throughput sequencing (ChIP-SEQ). To compare SCL’s direct versus indirect DNA-binding activities and, thus, gain insight into its mechanisms of action, we also analysed material isolated from SCLRER/RER fetal livers. anti-SCL ChIP-enriched DNA from mouse fetal liver erythroblast chromatin was analysed by Solexa sequencing. Four samples were processed: chromatin from SCL wildtype erythroblasts (WT-SCL) and SCL mutant erythroblasts (RER-SCL) were ChIPed by anti-SCL antibody and sequenced with their respective 'no antibody' controls.

ABSTRACT: {{section.text}} {{section.text}} {{section.text}} {{section.text}} {{abstract_sections[abstract_sections.length-1].tobeReduced=='true'?"... [more]":""}} [less]

SAMPLE PROTOCOL: {{section.text}} {{section.text}} {{section.text}} {{section.text}} {{sample_protocol_sections[sample_protocol_sections.length-1].tobeReduced=='true'?"... [more]":""}} [less]

DATA PROTOCOL: {{section.text}} {{section.text}} {{section.text}} {{section.text}} {{data_protocol_sections[data_protocol_sections.length-1].tobeReduced=='true'?"... [more]":""}} [less]

REANALYSIS of: {{reanalysis_item.accession}}

REANALYZED by: {{reanalyzed_item.accession}}

OTHER RELATED OMICS DATASETS IN: {{reanalysis_item.accession}}

INSTRUMENT(S): {{instrument+';'}}

ORGANISM(S): {{organism.name + ';'}}

TISSUE(S): {{tissue+';'}}

DISEASE(S): {{disease+';'}}

SUBMITTER: {{dataset['submitter']}}

PROVIDER: {{acc}} | {{repositories[domain]}} | {{dataset['publicationDate']}}

{{publication_info[publication_index_info[dataset.publicationIds[current_publication]]].title}}

{{author.fullname.substr(0,author.fullname.length-2)}} ,

{{publication_info[publication_index_info[dataset.publicationIds[current_publication]]].citation}}


Sorry, this publication's infomation has not been loaded in the Indexer, please go directly to PUBMED or Altmetric.

ABSTRACT: {{publication_info[publication_index_info[dataset.publicationIds[current_publication]]].pub_abstract[0]}}
{{publication_info[publication_index_info[dataset.publicationIds[current_publication]]].pub_abstract[1]}} [less]

ABSTRACT: {{publication_info[publication_index_info[dataset.publicationIds[current_publication]]].pub_abstract[0]|limitTo:500}} {{publication_info[publication_index_info[dataset.publicationIds[current_publication]]].pub_abstract[0].length>500?"... [more]":""}}

Publication: {{current_publication +1}}/{{dataset.publicationIds.length}}

{{dataset.publicationIds[current_publication].publicationDate}}


Only show the datasets with similarity scores above:{{threshold}}

Threshold:
    {{threshold}}
     

The biological similarity score is calculated based on the number of molecules (Proteins, Metabolites, Genes) common between two different projects.

Similar Datasets

  • Organism: {{organism["name"]}} Not available
    {{relatedDataset['publicationDate'].substr(0,4)+"-"+relatedDataset['publicationDate'].substr(4,2)+"-"+relatedDataset['publicationDate'].substr(6,2)}}| {{relatedDataset.id}} | {{repositories[relatedDataset.source]}}