{{section.text}} {{section.text}} {{section.text}} {{section.text}} {{dataset.name}}

Estrogen receptor beta (ERbeta) has potent anti-proliferative and anti-inflammatory properties, suggesting that ER beta-selective agonists might be a new class of therapeutic and chemopreventative agents. To understand how ER beta regulates genes, we identified genes regulated by the unliganded and liganded forms of ER alpha and ER beta in U2OS cells. Microarray data demonstrated that virtually no gene regulation occurred with unliganded ER alpha, whereas many genes were regulated by estradiol (E2). These results demonstrate ER alpha requires a ligand to regulate a single class of genes. In contrast, ER beta regulated three classes of genes. Class I genes were regulated primarily by unliganded ER beta. Class II genes were regulated only with E2, whereas Class III genes were regulated by both unliganded ER beta and E2. There were 453 Class I genes, 258 Class II genes and 83 Class III genes. To explore the mechanism whereby ER beta regulates different classes of genes ChIP-seq was performed to identify ER beta binding sites and adjacent transcription factor motifs in regulated genes. AP1 binding sites were more enriched in Class I genes, whereas ERE, NFKB1 and SP1 sites were more enriched in class II genes. ER beta bound to all three classes of genes demonstrating that ER beta binding is not responsible for differential regulation of genes by unliganded and liganded ER beta. The coactivator, NCOA2 was differentially recruited to several target genes. Our findings indicate that the unliganded and liganded forms of ER beta regulate three classes of genes by interacting with different transcription factors and coactivators. Examination of ER beta binding sites in U2OS cells with or without E2 treatment

ABSTRACT: {{section.text}} {{section.text}} {{section.text}} {{section.text}} {{abstract_sections[abstract_sections.length-1].tobeReduced=='true'?"... [more]":""}} [less]

SAMPLE PROTOCOL: {{section.text}} {{section.text}} {{section.text}} {{section.text}} {{sample_protocol_sections[sample_protocol_sections.length-1].tobeReduced=='true'?"... [more]":""}} [less]

DATA PROTOCOL: {{section.text}} {{section.text}} {{section.text}} {{section.text}} {{data_protocol_sections[data_protocol_sections.length-1].tobeReduced=='true'?"... [more]":""}} [less]

REANALYSIS of: {{reanalysis_item.accession}}

REANALYZED by: {{reanalyzed_item.accession}}

OTHER RELATED OMICS DATASETS IN: {{reanalysis_item.accession}}

INSTRUMENT(S): {{instrument+';'}}

ORGANISM(S): {{organism.name + ';'}}

TISSUE(S): {{tissue+';'}}

DISEASE(S): {{disease+';'}}

SUBMITTER: {{dataset['submitter']}}

PROVIDER: {{acc}} | {{repositories[domain]}} | {{dataset['publicationDate']}}


{{author.fullname.substr(0,author.fullname.length-2)}} ,


Sorry, this publication's infomation has not been loaded in the Indexer, please go directly to PUBMED or Altmetric.

ABSTRACT: {{publication_info[publication_index_info[dataset.publicationIds[current_publication]]].pub_abstract[0]}}
{{publication_info[publication_index_info[dataset.publicationIds[current_publication]]].pub_abstract[1]}} [less]

ABSTRACT: {{publication_info[publication_index_info[dataset.publicationIds[current_publication]]].pub_abstract[0]|limitTo:500}} {{publication_info[publication_index_info[dataset.publicationIds[current_publication]]].pub_abstract[0].length>500?"... [more]":""}}

Publication: {{current_publication +1}}/{{dataset.publicationIds.length}}


Only show the datasets with similarity scores above:{{threshold}}


The biological similarity score is calculated based on the number of molecules (Proteins, Metabolites, Genes) common between two different projects.

Similar Datasets

  • Organism: {{organism["name"]}} Not available
    {{relatedDataset['publicationDate'].substr(0,4)+"-"+relatedDataset['publicationDate'].substr(4,2)+"-"+relatedDataset['publicationDate'].substr(6,2)}}| {{relatedDataset.id}} | {{repositories[relatedDataset.source]}}