{{get_dataset_fail}}




{{section.text}} {{section.text}} {{section.text}} {{section.text}} {{dataset.name}}


In this study we could show that the treatment of primary murine prostate cancer(PCa) cells derived from the well-established TRAMP (transgenic adenocarcinoma ofmouse prostate) model with the histone deacetylase inhibitor (HDI) valproic acid (VPA) has an anti-proliferative, anti-migrative and anti-invasive effect on the cells.To our knowledge this is the first study that identified that treatment of PCa cells with VPA leads to the re-expression of cyclin D2, which is known to be frequently inactive in patients with PCa. Additionally, we could demonstrate that VPA specifically induces re-expression of cyclin D2 as a family member of the highly conserved Dtype cyclins in human colorectal and mammary gland adenocarcinoma cell lines, whereas VPA treatment has no effect in NIH/3T3 fibroblasts. The observed cyclin D2 re-expression in cancer cells is activated by an increase of histone acetylation in the promoter region of the cyclin D2 gene and might be the underlying molecular mechanism of the inhibition of proliferation of cancer cells after VPA treatment. Taken together, our results confirm VPA as an anticancer therapeutic option in tumors with epigenetically repressed cyclin D2 expression. For the comparison of vpa treatment in murine protate cancer cells we hybridized 3 replicates per condition

ABSTRACT: {{section.text}} {{section.text}} {{section.text}} {{section.text}} {{abstract_sections[abstract_sections.length-1].tobeReduced=='true'?"... [more]":""}} [less]

SAMPLE PROTOCOL: {{section.text}} {{section.text}} {{section.text}} {{section.text}} {{sample_protocol_sections[sample_protocol_sections.length-1].tobeReduced=='true'?"... [more]":""}} [less]

DATA PROTOCOL: {{section.text}} {{section.text}} {{section.text}} {{section.text}} {{data_protocol_sections[data_protocol_sections.length-1].tobeReduced=='true'?"... [more]":""}} [less]

REANALYSIS of: {{reanalysis_item.accession}}

REANALYZED by: {{reanalyzed_item.accession}}

OTHER RELATED OMICS DATASETS IN: {{reanalysis_item.accession}}

INSTRUMENT(S): {{instrument+';'}}

ORGANISM(S): {{organism.name + ';'}}

TISSUE(S): {{tissue+';'}}

DISEASE(S): {{disease+';'}}

SUBMITTER: {{dataset['submitter']}}

PROVIDER: {{acc}} | {{repositories[domain]}} | {{dataset['publicationDate']}}

{{publication_info[publication_index_info[dataset.publicationIds[current_publication]]].title}}

{{author.fullname.substr(0,author.fullname.length-2)}} ,

{{publication_info[publication_index_info[dataset.publicationIds[current_publication]]].citation}}


Sorry, this publication's infomation has not been loaded in the Indexer, please go directly to PUBMED or Altmetric.

ABSTRACT: {{publication_info[publication_index_info[dataset.publicationIds[current_publication]]].pub_abstract[0]}}
{{publication_info[publication_index_info[dataset.publicationIds[current_publication]]].pub_abstract[1]}} [less]

ABSTRACT: {{publication_info[publication_index_info[dataset.publicationIds[current_publication]]].pub_abstract[0]|limitTo:500}} {{publication_info[publication_index_info[dataset.publicationIds[current_publication]]].pub_abstract[0].length>500?"... [more]":""}}

Publication: {{current_publication +1}}/{{dataset.publicationIds.length}}

{{dataset.publicationIds[current_publication].publicationDate}}


Only show the datasets with similarity scores above:{{threshold}}

Threshold:
    {{threshold}}
     

The biological similarity score is calculated based on the number of molecules (Proteins, Metabolites, Genes) common between two different projects.

Similar Datasets

  • Organism: {{organism["name"]}} Not available
    {{relatedDataset['publicationDate'].substr(0,4)+"-"+relatedDataset['publicationDate'].substr(4,2)+"-"+relatedDataset['publicationDate'].substr(6,2)}}| {{relatedDataset.id}} | {{repositories[relatedDataset.source]}}