{{get_dataset_fail}}




{{section.text}} {{section.text}} {{section.text}} {{section.text}} {{dataset.name}}


In humans, there are four Ago proteins (Ago1–4) and AGO1- and 2 were previously implicated in TGS induced by exogenous siRNAs and microRNAs (miRs) directed against gene promoter transcripts via promotion of changes in histone covalent modifications and DNA methylation. Not-with-standing, many mechanistic details of this process remain poorly defined in human cells, and very little is known about the identity of possible endogenous signals, which may drive this process in human cells. Given the evolutionary conserved role of siRNAs and AGO proteins in TGS and heterochromatin formation, we set out to analyse their possible involvement in senesence-associated repression of E2F target genes. To obtain a detailed picture of AGO-immunoprecipitating miRs (RIP) in senescent cells, we used next-generation sequencing (NGS)(RIP-Seq). We also included histone H3 dimethylated on lysine 9 (H3K9me2) in this analysis to assign potential AGO2-interacting miRs to a repressive chromatin state and unfractionated, cellular RNA from senescent cells for normalisation. Determination of AGO AGO-immunoprecipitating miRs in WI-38 senescent human fibroblast

ABSTRACT: {{section.text}} {{section.text}} {{section.text}} {{section.text}} {{abstract_sections[abstract_sections.length-1].tobeReduced=='true'?"... [more]":""}} [less]

SAMPLE PROTOCOL: {{section.text}} {{section.text}} {{section.text}} {{section.text}} {{sample_protocol_sections[sample_protocol_sections.length-1].tobeReduced=='true'?"... [more]":""}} [less]

DATA PROTOCOL: {{section.text}} {{section.text}} {{section.text}} {{section.text}} {{data_protocol_sections[data_protocol_sections.length-1].tobeReduced=='true'?"... [more]":""}} [less]

REANALYSIS of: {{reanalysis_item.accession}}

REANALYZED by: {{reanalyzed_item.accession}}

OTHER RELATED OMICS DATASETS IN: {{reanalysis_item.accession}}

INSTRUMENT(S): {{instrument+';'}}

ORGANISM(S): {{organism.name + ';'}}

TISSUE(S): {{tissue+';'}}

DISEASE(S): {{disease+';'}}

SUBMITTER: {{dataset['submitter']}}

PROVIDER: {{acc}} | {{repositories[domain]}} | {{dataset['publicationDate']}}

{{publication_info[publication_index_info[dataset.publicationIds[current_publication]]].title}}

{{author.fullname.substr(0,author.fullname.length-2)}} ,

{{publication_info[publication_index_info[dataset.publicationIds[current_publication]]].citation}}


Sorry, this publication's infomation has not been loaded in the Indexer, please go directly to PUBMED or Altmetric.

ABSTRACT: {{publication_info[publication_index_info[dataset.publicationIds[current_publication]]].pub_abstract[0]}}
{{publication_info[publication_index_info[dataset.publicationIds[current_publication]]].pub_abstract[1]}} [less]

ABSTRACT: {{publication_info[publication_index_info[dataset.publicationIds[current_publication]]].pub_abstract[0]|limitTo:500}} {{publication_info[publication_index_info[dataset.publicationIds[current_publication]]].pub_abstract[0].length>500?"... [more]":""}}

Publication: {{current_publication +1}}/{{dataset.publicationIds.length}}

{{dataset.publicationIds[current_publication].publicationDate}}


Only show the datasets with similarity scores above:{{threshold}}

Threshold:
    {{threshold}}
     

The biological similarity score is calculated based on the number of molecules (Proteins, Metabolites, Genes) common between two different projects.

Similar Datasets

  • Organism: {{organism["name"]}} Not available
    {{relatedDataset['publicationDate'].substr(0,4)+"-"+relatedDataset['publicationDate'].substr(4,2)+"-"+relatedDataset['publicationDate'].substr(6,2)}}| {{relatedDataset.id}} | {{repositories[relatedDataset.source]}}