{{get_dataset_fail}}




{{section.text}} {{section.text}} {{section.text}} {{section.text}} {{dataset.name}}


Purpose: We purified spinal cord microglia utilizing percoll gradients and magnetic beads, followed by transcriptome profiling (RNA-seq) to define microglia expression profiles against other neural, immune cell-types. We next observed how the microglial transcriptomes change during activation in the SOD1-G93A mouse model of motor neuron degeneration at 3 time points. We also compared these profiles with that induced by LPS injection. Results and conclusions: ALS microglia were found to differ substantially from those activated by LPS and from M1/M2 macrophages by comparison with published datasets. These ALS microglia showing substantial induction of a neurodegeneration-tailored phenotype, with induction of lysosomal, RNA splicing, and Alzheimer's disease pathway genes. Overall they express a mixture of neuroprotective and neurotoxic factors during activation in ALS mice, showing that neuro-immune activation in the spinal cord is a double-edged sword. We also detected the transcriptional nature of surface marker expression in microglia (CD11b, CD86, CD11c), and substantial T-cell microglia cross-talk using correlative microglia transcriptome/FACS analysis. 42 total RNA samples from purified spinal cord microglia were subjected to paired-end RNA-sequencing. Parallel flow cytometry data was collected from the same spinal cords.

ABSTRACT: {{section.text}} {{section.text}} {{section.text}} {{section.text}} {{abstract_sections[abstract_sections.length-1].tobeReduced=='true'?"... [more]":""}} [less]

SAMPLE PROTOCOL: {{section.text}} {{section.text}} {{section.text}} {{section.text}} {{sample_protocol_sections[sample_protocol_sections.length-1].tobeReduced=='true'?"... [more]":""}} [less]

DATA PROTOCOL: {{section.text}} {{section.text}} {{section.text}} {{section.text}} {{data_protocol_sections[data_protocol_sections.length-1].tobeReduced=='true'?"... [more]":""}} [less]

REANALYSIS of: {{reanalysis_item.accession}}

REANALYZED by: {{reanalyzed_item.accession}}

OTHER RELATED OMICS DATASETS IN: {{reanalysis_item.accession}}

INSTRUMENT(S): {{instrument+';'}}

ORGANISM(S): {{organism.name + ';'}}

TISSUE(S): {{tissue+';'}}

DISEASE(S): {{disease+';'}}

SUBMITTER: {{dataset['submitter'] + ' <' + dataset['submitterMail'] + '>'}}

PROVIDER: {{acc}} | {{repositories[domain]}} | {{dataset['publicationDate'].substr(5,2)+"-"+dataset['publicationDate'].substr(8,2)+"-"+dataset['publicationDate'].substr(0,4)}}

{{publication_info[publication_index_info[dataset.publicationIds[current_publication]]].title}}

{{author.fullname.substr(0,author.fullname.length-2)}} ,

{{publication_info[publication_index_info[dataset.publicationIds[current_publication]]].citation}}


Sorry, this publication's infomation has not been loaded in the Indexer, please go directly to PUBMED or Altmetric.

ABSTRACT: {{publication_info[publication_index_info[dataset.publicationIds[current_publication]]].pub_abstract[0]}}
{{publication_info[publication_index_info[dataset.publicationIds[current_publication]]].pub_abstract[1]}} [less]

ABSTRACT: {{publication_info[publication_index_info[dataset.publicationIds[current_publication]]].pub_abstract[0]|limitTo:500}} {{publication_info[publication_index_info[dataset.publicationIds[current_publication]]].pub_abstract[0].length>500?"... [more]":""}}

Publication: {{current_publication +1}}/{{dataset.publicationIds.length}}

{{dataset.publicationIds[current_publication].publicationDate}}


Only show the datasets with similarity scores above:{{threshold}}

Threshold:
    {{threshold}}
     

The biological similarity score is calculated based on the number of molecules (Proteins, Metabolites, Genes) common between two different projects.

Similar Datasets

  • Organism: {{organism["name"]}} Not available
    {{relatedDataset['publicationDate'].substr(0,4)+"-"+relatedDataset['publicationDate'].substr(4,2)+"-"+relatedDataset['publicationDate'].substr(6,2)}}| {{relatedDataset.id}} | {{repositories[relatedDataset.source]}}