Unknown

Dataset Information

0

Polyamine analogues inhibit the ubiquitination of spermidine/spermine N1-acetyltransferase and prevent its targeting to the proteasome for degradation.


ABSTRACT: Spermidine/spermine N(1)-acetyltransferase (SSAT), a key enzyme in mammalian polyamine catabolism, undergoes rapid turnover (half-life approx. 30 min) and is highly inducible in response to polyamine analogues such as bis(ethyl)spermine (BE-3-4-3), which greatly stabilize the enzyme. Rapid degradation of SSAT in reticulocyte lysates was preceded by formation of a ladder of ubiquitinated forms, and required the production of high-molecular-mass complexes with ubiquitin (HMM-SSAT-Ubs). Mutation of all 11 lysines in SSAT separately to arginine demonstrated that no single lysine residue is critical for its degradation in vitro, but mutant K87R had a significantly longer half-life, suggesting that lysine-87 may be the preferred site for ubiquitination. Mutations at the C-terminus of SSAT, such as E171Q, resulted in marked stabilization of the protein, due to the lack of formation of the HMM-SSAT-Ubs. Addition of BE-3-4-3 prevented the accumulation of ubiquitin conjugates and the proteasomal degradation of wild-type SSAT. These results indicate that conformational changes brought about by the binding of polyamine analogues prevent the efficient polyubiquitination of SSAT, leading to a major increase in the amount of SSAT protein, and that alteration of the C-terminal end of the protein has a similar effect in preventing the productive interaction with an E2 or E3 component of the ubiquitin pathway.

SUBMITTER: Coleman CS 

PROVIDER: S-EPMC1222041 | biostudies-other | 2001 Aug

REPOSITORIES: biostudies-other

Similar Datasets

| S-EPMC3318587 | biostudies-literature
| S-EPMC7269456 | biostudies-literature
| S-EPMC6599347 | biostudies-literature
| S-EPMC2518666 | biostudies-literature
2007-04-25 | E-MEXP-165 | biostudies-arrayexpress
| S-EPMC6234463 | biostudies-literature
| S-EPMC2904252 | biostudies-literature
| S-EPMC3543422 | biostudies-literature