Targeting MLKL alleviates neuroinflammation and prevents motor neuron damage in Parkinson’s traits
Ontology highlight
ABSTRACT: Neuroinflammatory processes are a prominent contributor to the pathology of Parkinson’s disease (PD), characterized by the progressive loss of dopaminergic neurons in the substantia nigra (SN) and deposits of α-synuclein aggregates. MLKL-mediated cell necroptosis might occur in the onset of PD and lead to neuronal dopaminergic degeneration. However, the link between α-synuclein, neuroinflammatory processes, and neurodegeneration in PD remains unclear. Here, our in vitro study indicated that inhibition of MLKL exerted a protective effect against 6-OHDA- and TNF-α-induced neuronal cell death. Furthermore, we created a mouse model (Tg-Mlkl-/-) with typical progressive Parkinson traits by crossbreeding SNCA A53T transgenic mice with MLKL knockout mice. Tg-Mlkl-/ mice displayed dramatically improved motor symptoms and reduced hyperphosphorylated α-synuclein expression. More data suggested that MLKL deficiency protected dopaminergic neurons, blocked neuronal cell death, and attenuated neuroinflammation by inhibiting the activation of the microglia and astrocytes. Single-cell RNA-seq analysis revealed reduced microglial cells and damped neuron death in the SN of the Tg-Mlkl-/- mice. Subcluster analysis identified a unique cell type-specific transcriptome profiling in the MLKL deficiency mice. Thus, MLKL represents a critical therapeutic target for reducing neuroinflammation and preventing dopaminergic neuron degeneration.
ORGANISM(S): Mus musculus
PROVIDER: GSE197679 | GEO | 2023/12/14
REPOSITORIES: GEO
ACCESS DATA