Transcriptomics

Dataset Information

4

Differential Expression of Stress and Immune Response Pathway Transcripts and miRNAs in Normal Human Endothelial Cells Subjected to Fractionated or Single-Dose Radiation [miRNA]


ABSTRACT: While modern radiotherapy technologies can precisely deliver higher doses of radiation to tumors; thus, reducing overall radiation exposure to normal tissues, moderate dose and normal tissue toxicity still remains a significant limitation. The present study profiled the global effects on transcript and miR expression in Human Coronary Artery Endothelial Cells (HCAECs) using single-dose irradiation (SD, 10Gy) or multi-fractionated irradiation (MF, 2Gy x 5) regimens. Longitudinal timepoints were collected after a SD or final dose of MF irradiation for analysis using Agilent Human Gene Expression and miRNA microarray platforms. Compared to SD, the exposure to MF resulted in robust transcript and miR expression changes in terms of the number and magnitude. For data analysis, statistically significant mRNAs (2-fold) and miRs (1.5-fold) were processed by Ingenuity Pathway Analysis (IPA) to uncover miRs associated with target transcripts from several cellular pathways post-irradiation. Interestingly, MF radiation induced a cohort of mRNAs and miRs that coordinate the induction of immune response pathway under tight regulation. Additionally, mRNAs and miRs associated with DNA replication, recombination and repair, apoptosis, cardiovascular events and angiogenesis were revealed. Human Coronary Artery Endothelial Cells (HCAECs) were irradiated in a PANTAK high frequency X-ray generator (Precision X-ray Inc., N. Bedford, CT), operated at 300kV and 10MA. The dose rate was 1.6 Gy per min. Cells were plated into T75cm2 flasks (1-1.5 x 10^6 for single dose radiation and 0.6-0.8 x 10^6 for fractionated radiation). After 24h, cells were exposed to a total of 10 Gy radiation administered either as a single-dose radiation (SD), or as multi-fractionated radiation of 2 Gy x 5 (MF). These non-isoeffective doses were selected to simulate clinical hypofractionated and conventionally fractionated radiotherapy regimens. For the MF protocol, cells were exposed to 2 Gy radiation twice a day, at 6h interval. The cells were approximately 90% confluent at the time of harvesting. For both protocols, radiation-induced changes were analyzed at 6h and 24h after a SD and 6h and 24h after the final dose of fractionated irradiation. Separate controls were maintained for SD and MF radiation protocols.

ORGANISM(S): Homo sapiens  

SUBMITTER: Sanjeewani T Palayoor   Scott R Magnuson  Michael T Falduto  C N Coleman  Molykutty John-Aryankalayil  Adeola Y Makinde  Michael Falduto 

PROVIDER: E-GEOD-56824 | ArrayExpress | 2014-07-01

SECONDARY ACCESSION(S): GSE56824PRJNA245342

REPOSITORIES: GEO, ArrayExpress

Similar Datasets

2014-07-01 | E-GEOD-57059 | ArrayExpress
| GSE57059 | GEO
| GSE83915 | GEO
2015-12-12 | E-GEOD-75915 | ArrayExpress
2016-07-07 | E-GEOD-84108 | ArrayExpress
2016-07-07 | E-GEOD-84109 | ArrayExpress
2018-11-13 | GSE112375 | GEO
| GSE103178 | GEO
2014-09-22 | E-GEOD-42233 | ArrayExpress
| GSE103179 | GEO