Unknown

Dataset Information

0

Early presynaptic changes during plasticity in cultured hippocampal neurons.


ABSTRACT: Long-lasting increase in synaptic strength is thought to underlie learning. An explosion of data has characterized changes in postsynaptic (pstS) AMPA receptor cycling during potentiation. However, changes occurring within the presynaptic (prS) terminal remain largely unknown. We show that appearance of new release sites during potentiation between cultured hippocampal neurons is due to (a) conversion of nonrecycling sites to recycling sites, (b) formation of new releasing sites from areas containing diffuse staining for the prS marker Vesicle-Associated Membrane Protein-2 and (c) budding of new recycling sites from previously existing recycling sites. In addition, potentiation is accompanied by a release probability increase in pre-existing boutons depending upon their individual probability. These prS changes precede and regulate fluorescence increase for pstS GFP-tagged-AMPA-receptor subunit GluR1. These results suggest that potentiation involves early changes in the prS terminal including remodeling and release probability increase of pre-existing synapses.

SUBMITTER: Ninan I 

PROVIDER: S-EPMC1570425 | BioStudies | 2006-01-01T00:00:00Z

REPOSITORIES: biostudies

Similar Datasets

1000-01-01 | S-EPMC2775459 | BioStudies
1000-01-01 | S-EPMC2847611 | BioStudies
1000-01-01 | S-EPMC2847995 | BioStudies
1000-01-01 | S-EPMC5824811 | BioStudies
1000-01-01 | S-EPMC4754636 | BioStudies
2017-01-01 | S-EPMC5683353 | BioStudies
2009-01-01 | S-EPMC3077990 | BioStudies
2008-01-01 | S-EPMC2597488 | BioStudies
2006-01-01 | S-EPMC6675302 | BioStudies
1000-01-01 | S-EPMC1303615 | BioStudies