Dataset Information


Dominant protein interactions that influence the pathogenesis of conformational diseases.

ABSTRACT: Misfolding of exportable proteins can trigger endocrinopathies. For example, misfolding of insulin can result in autosomal dominant mutant INS gene-induced diabetes of youth, and misfolding of thyroglobulin can result in autosomal recessive congenital hypothyroidism with deficient thyroglobulin. Both proinsulin and thyroglobulin normally form homodimers; the mutant versions of both proteins misfold in the ER, triggering ER stress, and, in both cases, heterozygosity creates potential for cross-dimerization between mutant and WT gene products. Here, we investigated these two ER-retained mutant secretory proteins and the selectivity of their interactions with their respective WT counterparts. In both cases and in animal models of these diseases, we found that conditions favoring an increased stoichiometry of mutant gene product dominantly inhibited export of the WT partner, while increased relative level of the WT gene product helped to rescue secretion of the mutant partner. Surprisingly, the bidirectional consequences of secretory blockade and rescue occur simultaneously in the same cells. Thus, in the context of heterozygosity, expression level and stability of WT subunits may be a critical factor influencing the effect of protein misfolding on clinical phenotype. These results offer new insight into dominant as well as recessive inheritance of conformational diseases and offer opportunities for the development of new therapies.


PROVIDER: S-EPMC3696544 | BioStudies | 2013-01-01T00:00:00Z

REPOSITORIES: biostudies

Similar Datasets

2009-01-01 | S-EPMC2620899 | BioStudies
2005-01-01 | S-EPMC2527542 | BioStudies
2012-01-01 | S-EPMC3442401 | BioStudies
2008-01-01 | S-EPMC2441857 | BioStudies
2019-08-31 | E-MTAB-8266 | ArrayExpress
2020-02-25 | MSV000085006 | MassIVE
2011-01-01 | S-EPMC3174197 | BioStudies
1998-01-01 | S-EPMC21435 | BioStudies
1000-01-01 | S-EPMC3474590 | BioStudies
1000-01-01 | S-EPMC2823579 | BioStudies