Dataset Information


Local Integration Accounts for Weak Selectivity of Mouse Neocortical Parvalbumin Interneurons.

ABSTRACT: Dissecting the functional roles of excitatory and inhibitory neurons in cortical circuits is a fundamental goal in neuroscience. Of particular interest are their roles in emergent cortical computations such as binocular integration in primary visual cortex (V1). We measured the binocular response selectivity of genetically defined subpopulations of excitatory and inhibitory neurons. Parvalbumin (PV+) interneurons received strong inputs from both eyes but lacked selectivity for binocular disparity. Because broad selectivity could result from heterogeneous synaptic input from neighboring neurons, we examined how individual PV+ interneuron selectivity compared to that of the local neuronal network, which is primarily composed of excitatory neurons. PV+ neurons showed functional similarity to neighboring neuronal populations over spatial distances resembling measurements of synaptic connectivity. On the other hand, excitatory neurons expressing CaMKII? displayed no such functional similarity with the neighboring population. Our findings suggest that broad selectivity of PV+ interneurons results from nonspecific integration within local networks. VIDEO ABSTRACT.


PROVIDER: S-EPMC4562012 | BioStudies | 2015-01-01

REPOSITORIES: biostudies

Similar Datasets

2020-01-01 | S-EPMC7176413 | BioStudies
2013-01-01 | S-EPMC3962838 | BioStudies
2017-01-01 | S-EPMC5830304 | BioStudies
2019-01-01 | S-EPMC6941480 | BioStudies
2012-01-01 | S-EPMC3422431 | BioStudies
2017-01-01 | S-EPMC5746341 | BioStudies
2016-01-01 | S-EPMC5089927 | BioStudies
2019-01-01 | S-EPMC6685496 | BioStudies
2019-01-01 | S-EPMC6509071 | BioStudies
1000-01-01 | S-EPMC5900730 | BioStudies