Unknown

Dataset Information

0

Enhanced Cell Adhesion on a Nano-Embossed, Sticky Surface Prepared by the Printing of a DOPA-Bolaamphiphile Assembly Ink.


ABSTRACT: Inspired by adhesive mussel proteins, nanospherical self-assemblies were prepared from bolaamphiphiles containing 3,4-dihydroxyphenylalanine (DOPA) moieties, and a suspension of the bolaamphiphile assemblies was used for the preparation of a patterned surface that enhanced cell adhesion and viability. The abundant surface-exposed catechol groups on the robust bolaamphiphile self-assemblies were responsible for their outstanding adhesivity to various surfaces and showed purely elastic mechanical behaviour in response to tensile stress. Compared to other polydopamine coatings, the spherical DOPA-bolaamphiphile assemblies were coated uniformly and densely on the surface, yielding a nano-embossed surface. Cell culture tests on the surface modified by DOPA-bolaamphiphiles also showed enhanced cellular adhesivity and increased viability compared to surfaces decorated with other catecholic compounds. Furthermore, the guided growth of a cell line was demonstrated on the patterned surface, which was prepared by inkjet printing using a suspension of the self-assembled particles as an ink. The self-assembly of DOPA-bolaamphiphiles shows that they are a promising adhesive, biocompatible material with the potential to modify various substances.

SUBMITTER: Lee C 

PROVIDER: S-EPMC5653752 | BioStudies | 2017-01-01T00:00:00Z

REPOSITORIES: biostudies

Similar Datasets

1000-01-01 | S-EPMC3901739 | BioStudies
1000-01-01 | S-EPMC5853746 | BioStudies
1000-01-01 | S-EPMC4108209 | BioStudies
2018-01-01 | S-EPMC6645274 | BioStudies
2009-01-01 | S-EPMC2790596 | BioStudies
1000-01-01 | S-EPMC5304689 | BioStudies
2016-01-01 | S-EPMC5612378 | BioStudies
2019-01-01 | S-EPMC7001463 | BioStudies
1000-01-01 | S-EPMC3615820 | BioStudies
2015-01-01 | S-EPMC5488267 | BioStudies