Dataset Information


Unique function words characterize genomic proteins.

ABSTRACT: Between 2009 and 2016 the number of protein sequences from known species increased 10-fold from 8 million to 85 million. About 80% of these sequences contain at least one region recognized by the conserved domain architecture retrieval tool (CDART) as a sequence motif. Motifs provide clues to biological function but CDART often matches the same region of a protein by two or more profiles. Such synonyms complicate estimates of functional complexity. We do full-linkage clustering of redundant profiles by finding maximum disjoint cliques: Each cluster is replaced by a single representative profile to give what we term a unique function word (UFW). From 2009 to 2016, the number of sequence profiles used by CDART increased by 80%; the number of UFWs increased more slowly by 30%, indicating that the number of UFWs may be saturating. The number of sequences matched by a single UFW (sequences with single domain architectures) increased as slowly as the number of different words, whereas the number of sequences matched by a combination of two or more UFWs in sequences with multiple domain architectures (MDAs) increased at the same rate as the total number of sequences. This combinatorial arrangement of a limited number of UFWs in MDAs accounts for the genomic diversity of protein sequences. Although eukaryotes and prokaryotes use very similar sets of "words" or UFWs (57% shared), the "sentences" (MDAs) are different (1.3% shared).

PROVIDER: S-EPMC6042118 | BioStudies |

REPOSITORIES: biostudies

Similar Datasets

| S-EPMC2698892 | BioStudies
| S-EPMC1858635 | BioStudies
| S-EPMC6157012 | BioStudies
| S-EPMC6397568 | BioStudies
| S-EPMC6591872 | BioStudies
| S-EPMC5722702 | BioStudies
| S-EPMC3927609 | BioStudies
| S-EPMC3705623 | BioStudies
| S-EPMC1815482 | BioStudies
| S-EPMC9125794 | BioStudies