Dataset Information


Ultraviolet-Durable Superhydrophobic Nanocomposite Thin Films Based on Cobalt Stearate-Coated TiO2 Nanoparticles Combined with Polymethylhydrosiloxane.

ABSTRACT: Ultraviolet (UV)-durable superhydrophobic nanocomposite thin films have been successfully fabricated on aluminum substrates by embedding cobalt stearate (CoSA)-coated TiO2 nanoparticles in a hydrophobic polymethylhydrosiloxane (PMHS) matrix (PMHS/TiO2@CoSA) using the sol-gel process. When compared to the sharp decrease of water contact angle (WCA) on the superhydrophobic PMHS/TiO2 thin films, the PMHS/TiO2@CoSA superhydrophobic thin films exhibited a nearly constant WCA of 160° under continuous UV irradiation for more than 1 month. The designed scheme of the TiO2@CoSA core-shell structure not only increased the hydrophobic properties of the TiO2 nanoparticle surface but also confined the photocatalytic efficiency of TiO2 nanoparticles. A plausible model has been suggested to explain the UV-durable mechanism of the superhydrophobic nanocomposite thin films based on PMHS/TiO2@CoSA. Furthermore, the elongated lifetime in the exposure of the solar light imparts this superhydrophobic nanocomposite thin film with potential practical applications where UV-resistant properties are emphasized including corrosion-resistant building walls, anti-icing airplanes, self-cleaning vehicles, and so forth.

PROVIDER: S-EPMC6645026 | BioStudies |

REPOSITORIES: biostudies

Similar Datasets

2014-01-01 | S-EPMC4168693 | BioStudies
2019-01-01 | S-EPMC6680462 | BioStudies
2017-01-01 | S-EPMC5941249 | BioStudies
1000-01-01 | S-EPMC3985694 | BioStudies
1000-01-01 | S-EPMC5727532 | BioStudies
2016-01-01 | S-EPMC5457055 | BioStudies
| S-EPMC7178700 | BioStudies
1000-01-01 | S-EPMC5648811 | BioStudies
2019-01-01 | S-EPMC6458394 | BioStudies
1000-01-01 | S-EPMC5098189 | BioStudies