Dataset Information


High-Throughput Sequencing Approach to Analyze the Effect of Aging Time and Barrel Usage on the Microbial Community Composition of Red Wines.

ABSTRACT: Wine aged in barrels or bottles is susceptible to alteration by microorganisms that affect the final product quality. However, our knowledge of the microbiota during aging and the factors modulating the microbial communities is still quite limited. The present work uses high-throughput sequencing (HTS) techniques to deal with the meta-taxonomic characterization of microbial consortia present in red wines along 12 months aging. The wines obtained from two different grape varieties were aged at two different cellars and compared based on time of wine aging in the barrels, previous usage of the barrels, and differences between wine aging in oak barrels or glass bottles. The aging in barrels did not significantly affect the microbial diversity but changed the structure and composition of fungal and bacterial populations. The main microorganisms driving these changes were the bacterial genera Acetobacter, Oenococcus, Lactobacillus, Gluconobacter, Lactococcus, and Komagataeibacter and the fungal genera Malassezia, Hanseniaspora, and Torulaspora. Our results showed that the oak barrels increased effect on the microbial diversity in comparison with the glass bottles, in which the microbial community was very similar to that of the wine introduced in the barrels at the beginning of the aging. Furthermore, wine in the bottles harbored higher proportion of Lactobacillus but lower proportion of Acetobacter. Finally, it seems that 1 year of previous usage of the barrels was not enough to induce significant changes in the diversity or composition of microbiota through aging compared with new barrels. This is the first meta-taxonomic study on microbial communities during wine aging and shows that the microorganism composition of barrel-aged wines was similar at both cellars. These results hint at the possibility of a common and stable microbiota after aging in the absence of exogenous alterations. Further corroborations on the current outcome would be valuable for the comparison and detection of microbial alterations during aging that could potentially prevent economic losses in the wine industry.

SUBMITTER: Kioroglou D 

PROVIDER: S-EPMC7509142 | BioStudies | 2020-01-01

REPOSITORIES: biostudies

Similar Datasets

2020-01-01 | S-EPMC7555037 | BioStudies
2020-01-01 | S-EPMC7143435 | BioStudies
2020-01-01 | S-EPMC7600871 | BioStudies
2020-01-01 | S-EPMC7230544 | BioStudies
1000-01-01 | S-EPMC6100326 | BioStudies
2016-01-01 | S-EPMC4959672 | BioStudies
2018-01-01 | S-EPMC5808214 | BioStudies
2018-01-01 | S-EPMC6167421 | BioStudies
2020-01-01 | S-EPMC7179476 | BioStudies
2020-01-01 | S-EPMC7560601 | BioStudies