Project description:We report the draft genome sequences of Bacillus glennii V44-8, Bacillus saganii V47-23a, and Bacillus sp. strain V59.32b, isolated from the Viking spacecraft assembly cleanroom, and Bacillus sp. strain MER_TA_151 and Paenibacillus sp. strain MER_111, isolated from the Mars Exploration Rover (MER) assembly cleanroom.
Project description:Here we report the draft genome sequence of an endophytic Paenibacillus tyrfis strain isolated from the Universiti Kebangsaan Malaysia reserve forest, Malaysia. The genome size was approximately 8.04 Mb, and the assembly consisted of 107 scaffolds with 168 contigs, and had a G + C content of 53%. Phylogenetic analysis of strain SUK123 using the 16S rRNA gene revealed that it belonged to the family Paenibacillaceae with the highest similarity to Paenibacillus elgii SDT (99%). Whole genome comparison of SUK123 with related species using average nucleotide identity (ANI) analysis revealed a similarity of 98% to Paenibacillus tyrfis Mst1T, 94% to Paenibacillus elgii B69T, 91% to Paenibacillus ehimensis A2T, 68% to Paenibacillus polymyxa SC2T and 69% to Paenibacillus alvei DMS29T. The draft genome was deposited at the European Nucleotide Archive (PRJEB21373).
Project description:We report the draft genome sequence of a strain (OT2-17) of Paenibacillus isolated from the rhizosphere of onions irrigated with triclosan. Strain OT2-17 demonstrated the use of triclosan as the sole carbon source. A genome assembly of approximately 5.8?Mb was generated with a calculated G+C content of 45.5%.
Project description:Bacteria of the Paenibacillus genus are becoming important in many fields of science, including agriculture, for their positive effects on the health of plants. However, there are little information available on this genus compared to other bacteria (such as Bacillus or Pseudomonas), especially when considering genomic information. Sequencing the genomes of plant-beneficial bacteria is a crucial step to identify the genetic elements underlying the adaptation to life inside a plant host and, in particular, which of these features determine the differences between a helpful microorganism and a pathogenic one. In this study, we have characterized the genome of Paenibacillus pasadenensis, strain R16, recently investigated for its antifungal activities and plant-associated features. An hybrid assembly approach was used integrating the very precise reads obtained by Illumina technology and long fragments acquired with Oxford Nanopore Technology (ONT) sequencing. De novo genome assembly based solely on Illumina reads generated a relatively fragmented assembly of 5.72 Mbp in 99 ungapped sequences with an N50 length of 544 Kbp; hybrid assembly, integrating Illumina and ONT reads, improved the assembly quality, generating a genome of 5.75 Mbp, organized in 6 contigs with an N50 length of 3.4 Mbp. Annotation of the latter genome identified 4987 coding sequences, of which 1610 are hypothetical proteins. Enrichment analysis identified pathways of particular interest for the endophyte biology, including the chitin-utilization pathway and the incomplete siderophore pathway which hints at siderophore parasitism. In addition the analysis led to the identification of genes for the production of terpenes, as for example farnesol, that was hypothesized as the main antifungal molecule produced by the strain. The functional analysis on the genome confirmed several plant-associated, plant-growth promotion, and biocontrol traits of strain R16, thus adding insights in the genetic bases of these complex features, and of the Paenibacillus genus in general.
Project description:Paenibacillus sp. strain A2 is a Gram-negative rod-shaped bacterium isolated from a mixture of formation water and petroleum in Daqing oilfield, China. This facultative aerobic bacterium was found to have a broad capacity for metabolizing hydrocarbon and organosulfur compounds, which are the main reasons for the interest in sequencing its genome. Here we describe the features of Paenibacillus sp. strain A2, together with the genome sequence and its annotation. The 7,650,246 bp long genome (1 chromosome but no plasmid) exhibits a G+C content of 54.2 % and contains 7575 protein-coding and 49 RNA genes, including 3 rRNA genes. One putative alkane monooxygenase, one putative alkanesulfonate monooxygenase, one putative alkanesulfonate transporter and four putative sulfate transporters were found in the draft genome.
Project description:Paenibacillus antibioticophila strain GD11(T) sp. nov. is the type strain of a new species within the genus Paenibacillus. This strain, whose genome is described here, was isolated from human faeces of a 63-year-old woman with multidrug-resistant tuberculosis who was receiving numerous antibiotics at the time of stool collection. P. antibioticophila is a Gram-positive aerobic bacterium. We describe here the features of this bacterium, together with the complete genome sequence and annotation. The 5 562 631 bp long genome contains 5084 protein-coding and 71 RNA genes.
Project description:Microbial culturomics represents a completely new approach to investigate microbial diversity by using different optimized culture conditions, mass spectrometry, genome sequencing and annotation and phenotypic description that allow for an extensive characterization of new species and the study of the human microbiome. Here we present four new species within the genus Paenibacillus: 'Paenibacillus bouchesdurhonensis' strain Marseille-P3071T, 'Paenibacillus rubinfantis' strain MT18T, 'Paenibacillus senegalimassiliensis' strain SIT18T and 'Paenibacillus tuaregi' strain Marseille-P2472T, which are all facultatively aerobic and Gram-positive bacilli.
Project description:We have isolated a likely bacterial pathogen from cerebrospinal fluid from a Ugandan infant suffering from hydrocephalus. Whole-genome sequencing and assembly of the genome of the clinical isolate, as well as that of a previously deposited reference strain, identified the isolate as Paenibacillus thiaminolyticus, which has not been associated with widespread human infections.
Project description:OBJECTIVE:A Paenibacillus strain isolated in previous research exhibited antimicrobial activity against relevant human pathogens including Staphylococcus aureus and Listeria monocytogenes. In this study, the genome of the aforementioned strain, designated as MP1, was shotgun sequenced. The draft genome of strain MP1 was subject to multiple genomic analyses to taxonomically characterize it and identify the genes potentially responsible for its antimicrobial activity. RESULTS:Here we report the draft genome sequence of an antimicrobial producing Paenibacillus strain, MP1. Average Nucleotide Identity (ANI) analysis established strain MP1 as a new strain of the previously characterized Paenibacillus alvei. The genomic analysis identified several putative secondary metabolite clusters including seven Nonribosomal Peptide Synthetase clusters (NRPS) (>?10,000 nt), one bacteriocin or other unspecified Ribosomally Synthesized and Post-Translationally modified Peptide Product (RiPP), one lanthipeptide, and six hybrid clusters (NRPS-Type I Polyketide synthase (T1PKS) and NRPS-trans Amino Transferase Polyketide Synthase (AT-PKS)).
Project description:Paenibacillus mucilaginosus is a critical growth-improving silicate bacterium. Here, we report the complete genome sequence of P. mucilaginosus strain KNP414. This information will provide us with the opportunity to understand its molecular mechanisms and develop more effective utilization of the strain.