Project description:Drought is the largest stress affecting agricultural crops, resulting in substantial reductions in yield. Plant adaptation to water stress is a complex trait involving changes in hormone signaling, physiology, and morphology. Sorghum (<i>Sorghum bicolor</i> (L.) Moench) is a C4 cereal grass; it is an agricultural staple, and it is particularly drought-tolerant. To better understand drought adaptation strategies, we compared the cytosolic- and organelle-enriched protein profiles of leaves from two <i>Sorghum bicolor</i> genotypes, RTx430 and BTx642, with differing preflowering drought tolerances after 8 weeks of growth under water limitation in the field. In agreement with previous findings, we observed significant drought-induced changes in the abundance of multiple heat shock proteins and dehydrins in both genotypes. Interestingly, our data suggest a larger genotype-specific drought response in protein profiles of organelles, while cytosolic responses are largely similar between genotypes. Organelle-enriched proteins whose abundance significantly changed exclusively in the preflowering drought-tolerant genotype RTx430 upon drought stress suggest multiple mechanisms of drought tolerance. These include an RTx430-specific change in proteins associated with ABA metabolism and signal transduction, Rubisco activation, reactive oxygen species scavenging, flowering time regulation, and epicuticular wax production. We discuss the current understanding of these processes in relation to drought tolerance and their potential implications.
Project description:This experiment contains the subset of data corresponding to sorghum RNA-Seq data from experiment E-GEOD-50464 (http://www.ebi.ac.uk/arrayexpress/experiments/E-GEOD-50464/), which goal is to examine the transcriptome of various Sorghum bicolor (BTx623) tissues: flowers, vegetative and floral meristems, embryos, roots and shoots. Thus, we expanded the existing transcriptome atlas for sorghum by conducting RNA-Seq analysis on meristematic tissues, florets, and embryos, and these data sets have been used to improve on the existing community structural annotations.
Project description:Sorghum (Sorghum bicolor), also known as great millet, is one of the most popular cultivated grass species in the world. Sorghum is frequently consumed as food for humans and animals as well as used for ethanol production. In this study, we conducted de novo transcriptome assembly for sorghum variety Taejin by next-generation sequencing, obtaining 8.748 GB of raw data. The raw data in this study can be available in NCBI SRA database with accession number of SRX1715644. Using the Trinity program, we identified 222,161 transcripts from sorghum variety Taejin. We further predicted coding regions within the assembled transcripts by the TransDecoder program, resulting in a total of 148,531 proteins. We carried out BLASTP against the Swiss-Prot protein sequence database to annotate the functions of the identified proteins. To our knowledge, this is the first transcriptome data for a sorghum variety derived from Korea, and it can be usefully applied to the generation of genetic markers.
Project description:Despite a "ploidy barrier," interspecific crosses to wild and/or cultivated sorghum (Sorghum bicolor, 2n = 2x = 20) may have aided the spread across six continents of Sorghum halepense, also exemplifying risks of "transgene escape" from crops that could make weeds more difficult to control. Genetic maps of two BC1F1 populations derived from crosses of S. bicolor (sorghum) and S. halepense with totals of 722 and 795 single nucleotide polymorphism (SNP) markers span 37 and 35 linkage groups, with 2-6 for each of the 10 basic sorghum chromosomes due to fragments covering different chromosomal portions or independent segregation from different S. halepense homologs. Segregation distortion favored S. halepense alleles on chromosomes 2 (1.06-4.68 Mb, near a fertility restoration gene), 7 (1.20-6.16 Mb), 8 (1.81-5.33 Mb, associated with gene conversion), and 9 (47.5-50.1 Mb); and S. bicolor alleles on chromosome 6 (0-40 Mb), which contains both a large heterochromatin block and the Ma1 gene. Regions of the S. halepense genome that are recalcitrant to gene flow from sorghum might be exploited as part a multi-component system to reduce the likelihood of spread of transgenes or other modified genes. Its SNP profile suggests that chromosome segments from its respective progenitors S. bicolor and Sorghum propinquum have extensively recombined in S. halepense. This study reveals genomic regions that might discourage crop-to-weed gene escape, and provides a foundation for marker-trait association analysis to determine the genetic control of traits contributing to weediness, invasiveness, and perenniality of S. halepense.
Project description:Sorghum [Sorghum bicolor (L.) Moench] grain yield is severely affected by abiotic and biotic stresses during post-flowering stages, which has been aggravated by climate change. New parental lines having genes for various biotic and abiotic stress tolerances have the potential to mitigate this negative effect. Field studies were conducted under irrigated and dryland conditions with 128 exotic germplasm and 12 adapted lines to evaluate and identify potential sources for post-flowering drought tolerance and stalk and charcoal rot tolerances. The various physiological and disease related traits were recorded under irrigated and dryland conditions. Under dryland conditions, chlorophyll content (SPAD), grain yield and HI were decreased by 9, 44 and 16%, respectively, compared to irrigated conditions. Genotype RTx7000 and PI475432 had higher leaf temperature and grain yield, however, genotype PI570895 had lower leaf temperature and higher grain yield under dryland conditions. Increased grain yield and optimum leaf temperature was observed in PI510898, IS1212 and PI533946 compared to BTx642 (B35). However, IS14290, IS12945 and IS1219 had decreased grain yield and optimum leaf temperature under dryland conditions. Under irrigated conditions, stalk and charcoal rot disease severity was higher than under dryland conditions. Genotypes IS30562 and 1790E R had tolerance to both stalk rot and charcoal rot respectively and IS12706 was the most susceptible to both diseases. PI510898 showed combined tolerance to drought and Fusarium stalk rot under dryland conditions. The genotypes identified in this study are potential sources of drought and disease tolerance and will be used to develop better adaptable parental lines followed by high yielding hybrids.
Project description:Target leaf spot (TLS) of sorghum, a foliar disease caused by the necrotrophic fungus Bipolaris cookei (also known as Bipolaris sorghicola), can affect grain yield in sorghum by causing premature drying of leaves and defoliation. Two sorghum recombinant inbred line (RIL) populations, BTx623/BTx642 and BTx623/SC155-14E, were assessed for TLS resistance in replicated trials. Using least square mean trait data, four TLS resistance QTL were identified, two in each population. Of these, three were previously unidentified while a major QTL on chromosome 5 in the BTx623/BTx642 RIL population corresponded to the previously identified TLS resistance gene ds1. A set of sorghum lines were assessed for production of reactive oxygen species induced by treatment with the microbe-associated molecular pattern (MAMP) flg22 (a derivative of flagellin). Flg22-induced ROS production varied between lines in a consistent fashion. One QTL associated with variation in the flg22 response was detected in the RIL populations. No evidence was found to link variation in the MAMP response to variation in TLS resistance.
Project description:This study utilized next generation sequencing technology (RNA-Seq) to examine the transcriptome of sorghum plants challenged with osmotic stress and exogenous abscisic acid (ABA) to elucidate those genes and gene networks that contribute to sorghum's tolerance to water-limiting environments with a long-term aim of developing strategies to improve plant productivity under drought. We examined the mRNA of 9 day old Sorghum bicolor (BTx623) from 2 tissue types (roots and shoots) for 2 treatments (20 uM ABA and 20% PEG) with corresponding controls (0.2M NaOH and H2O) for 27 hrs prior to harvesting, each done in triplicate biological replicates - resulting in 24 unique runs
Project description:Parallel Analysis of RNA Ends (PARE) sequencing reads were generated to validate putative microRNAs and identify cleavage sites in Sorghum bicolor and Setaria viridis. Overall design: For Sorghum bicolor, a variety of conditions were used to generate total RNA, including leaf and three stages of anther development. For Setaria viridis, single replicates of leaf, panicle, and two stages of spikelets were sampled.
Project description:BACKGROUND: Sorghum genotypes used for grain production in temperate regions are photoperiod insensitive and flower early avoiding adverse environments during the reproductive phase. In contrast, energy sorghum hybrids are highly photoperiod sensitive with extended vegetative phases in long days, resulting in enhanced biomass accumulation. SbPRR37 and SbGHD7 contribute to photoperiod sensitivity in sorghum by repressing expression of SbEHD1 and FT-like genes, thereby delaying flowering in long days with minimal influence in short days (PNAS_108:16469-16474, 2011; Plant Genome_in press, 2014). The GIGANTEA (GI)-CONSTANS (CO)-FLOWERING LOCUS T (FT) pathway regulates flowering time in Arabidopsis and the grasses (J Exp Bot_62:2453-2463, 2011). In long day flowering plants, such as Arabidopsis and barley, CONSTANS activates FT expression and flowering in long days. In rice, a short day flowering plant, Hd1, the ortholog of CONSTANS, activates flowering in short days and represses flowering in long days. RESULTS: Quantitative trait loci (QTL) that modify flowering time in sorghum were identified by screening Recombinant Inbred Lines (RILs) derived from BTx642 and Tx7000 in long days, short days, and under field conditions. Analysis of the flowering time QTL on SBI-10 revealed that BTx642 encodes a recessive CONSTANS allele containing a His106Tyr substitution in B-box 2 known to inactivate CONSTANS in Arabidopsis thaliana. Genetic analysis characterized sorghum CONSTANS as a floral activator that promotes flowering by inducing the expression of EARLY HEADING DATE 1 (SbEHD1) and sorghum orthologs of the maize FT genes ZCN8 (SbCN8) and ZCN12 (SbCN12). The floral repressor PSEUDORESPONSE REGULATOR PROTEIN 37 (PRR37) inhibits sorghum CONSTANS activity and flowering in long days. CONCLUSION: Sorghum CONSTANS is an activator of flowering that is repressed post-transcriptionally in long days by the floral inhibitor PRR37, contributing to photoperiod sensitive flowering in Sorghum bicolor, a short day plant.
Project description:BACKGROUND: Effective improvement in sorghum crop development necessitates a genomics-based approach to identify functional genes and QTLs. Sequenced in 2009, a comprehensive annotation of the sorghum genome and the development of functional genomics resources is key to enable the discovery and deployment of regulatory and metabolic genes and gene networks for crop improvement. RESULTS: This study utilizes the first commercially available whole-transcriptome sorghum microarray (Sorgh-WTa520972F) to identify tissue and genotype-specific expression patterns for all identified Sorghum bicolor exons and UTRs. The genechip contains 1,026,373 probes covering 149,182 exons (27,577 genes) across the Sorghum bicolor nuclear, chloroplast, and mitochondrial genomes. Specific probesets were also included for putative non-coding RNAs that may play a role in gene regulation (e.g., microRNAs), and confirmed functional small RNAs in related species (maize and sugarcane) were also included in our array design. We generated expression data for 78 samples with a combination of four different tissue types (shoot, root, leaf and stem), two dissected stem tissues (pith and rind) and six diverse genotypes, which included 6 public sorghum lines (R159, Atlas, Fremont, PI152611, AR2400 and PI455230) representing grain, sweet, forage, and high biomass ideotypes. CONCLUSIONS: Here we present a summary of the microarray dataset, including analysis of tissue-specific gene expression profiles and associated expression profiles of relevant metabolic pathways. With an aim to enable identification and functional characterization of genes in sorghum, this expression atlas presents a new and valuable resource to the research community.