Project description:The internal stipe necrosis of cultivated mushrooms (Agaricus bisporus) is caused by the bacterium Ewingella americana, a species of the Enterobacteriaceae. Recently, Ewingella americana was isolated from cultivated white button mushrooms in Korea evidencing symptoms of internal stipe browning. Its symptoms are visible only at harvest, and appear as a variable browning reaction in the center of the stipes. From these lesions, we isolated one bacterial strain (designated CH4). Inoculation of the bacterial isolate into mushroom sporocarps yielded the characteristic browning symptoms that were distinguishable from those of the bacterial soft rot that is well known to mushroom growers. The results of Gram stain, flagellal staining, and biochemical tests identified these isolates as E. americana. This was verified by pathogenicity, physiological and biochemical characteristics, and the results of an analysis of the 16S rRNA gene sequences and the fatty acids profile. This is the first report of the isolation of E. americana from cultivated white button mushrooms in Korea.
Project description:Ewingella americana is a cosmopolitan bacterial pathogen that has been isolated from many hosts. Here, we sequenced a high-quality genome of E. americana B6-1 isolated from Flammulina filiformis, an important cultivated mushroom, performed a comparative genomic analysis with four other E. americana strains from various origins, and tested the susceptibility of B6-1 to antibiotics. The genome size, predicted genes, and GC (guanine-cytosine) content of B6-1 was 4.67 Mb, 4301, and 53.80%, respectively. The origin of the strains did not significantly affect the phylogeny, but mobile genetic elements shaped the evolution of the genus Ewingella. The strains encoded a set of common genes for type secretion, virulence effectors, CAZymes, and toxins required for pathogenicity in all hosts. They also had antibiotic resistance, pigments to suppress or evade host defense responses, as well as genes for adaptation to different environmental conditions, including temperature, oxidation, and nutrients. These findings provide a better understanding of the virulence, antibiotic resistance, and host adaptation strategies of Ewingella, and they also contribute to the development of effective control strategies.
Project description:The evolution of mitochondria from ancestral bacteria required that new protein transport machinery be established. Recent controversy over the evolution of these new molecular machines hinges on the degree to which ancestral bacterial transporters contributed during the establishment of the new protein import pathway. Reclinomonas americana is a unicellular eukaryote with the most gene-rich mitochondrial genome known, and the large collection of membrane proteins encoded on the mitochondrial genome of R. americana includes a bacterial-type SecY protein transporter. Analysis of expressed sequence tags shows R. americana also has components of a mitochondrial protein translocase or "translocase in the inner mitochondrial membrane complex." Along with several other membrane proteins encoded on the mitochondrial genome Cox11, an assembly factor for cytochrome c oxidase retains sequence features suggesting that it is assembled by the SecY complex in R. americana. Despite this, protein import studies show that the RaCox11 protein is suited for import into mitochondria and functional complementation if the gene is transferred into the nucleus of yeast. Reclinomonas americana provides direct evidence that bacterial protein transport pathways were retained, alongside the evolving mitochondrial protein import machinery, shedding new light on the process of mitochondrial evolution.
Project description:BACKGROUND:Plants exhibit wide chemical diversity due to the production of specialized metabolites that function as pollinator attractants, defensive compounds, and signaling molecules. Lamiaceae (mints) are known for their chemodiversity and have been cultivated for use as culinary herbs, as well as sources of insect repellents, health-promoting compounds, and fragrance. FINDINGS:We report the chromosome-scale genome assembly of Callicarpa americana L. (American beautyberry), a species within the early-diverging Callicarpoideae clade of Lamiaceae, known for its metallic purple fruits and use as an insect repellent due to its production of terpenoids. Using long-read sequencing and Hi-C scaffolding, we generated a 506.1-Mb assembly spanning 17 pseudomolecules with N50 contig and N50 scaffold sizes of 7.5 and 29.0 Mb, respectively. In all, 32,164 genes were annotated, including 53 candidate terpene synthases and 47 putative clusters of specialized metabolite biosynthetic pathways. Our analyses revealed 3 putative whole-genome duplication events, which, together with local tandem duplications, contributed to gene family expansion of terpene synthases. Kolavenyl diphosphate is a gateway to many of the bioactive terpenoids in C. americana; experimental validation confirmed that CamTPS2 encodes kolavenyl diphosphate synthase. Syntenic analyses with Tectona grandis L. f. (teak), a member of the Tectonoideae clade of Lamiaceae known for exceptionally strong wood resistant to insects, revealed 963 collinear blocks and 21,297 C. americana syntelogs. CONCLUSIONS:Access to the C. americana genome provides a road map for rapid discovery of genes encoding plant-derived agrichemicals and a key resource for understanding the evolution of chemical diversity in Lamiaceae.
Project description:Agrobacterium sp. ATCC 31749 is an industrial strain for the commercial production of curdlan, an important exopolysaccharide with food and medical applications. Here we report the genome sequence of the curdlan-producing strain ATCC 31749. Genome sequencing is the first step toward the understanding of regulation of curdlan biosynthesis.
Project description:We report the 4.049-Mbp high-quality draft assembly of the Pseudoalteromonas luteoviolacea strain B (ATCC 29581) genome. This marine species is known to biosynthesize several antimicrobial compounds, including the purple pigment violacein. Whole-genome sequencing and genome mining will complement experimental studies aimed at elucidating novel biosynthetic pathways capable of producing pharmaceutically relevant molecules. Based upon 16S rRNA phylogenetic analysis, we propose that strain ATCC 29581 be classified as a distinct phylogenetic species of the genus Pseudoalteromonas.
Project description:Sex chromosomes are generally morphologically and functionally distinct, but the evolutionary forces that cause this differentiation are poorly understood. Drosophila americana americana was used in this study to examine one aspect of sex chromosome evolution, the degeneration of nonrecombining Y chromosomes. The primary X chromosome of D. a. americana is fused with a chromosomal element that was ancestrally an autosome, causing this homologous chromosomal pair to segregate with the sex chromosomes. Sequence variation at the Alcohol Dehydrogenase (Adh) gene was used to determine the pattern of nucleotide variation on the neo-sex chromosomes in natural populations. Sequences of Adh were obtained for neo-X and neo-Y chromosomes of D. a. americana, and for Adh of D. a. texana, in which it is autosomal. No significant sequence differentiation is present between the neo-X and neo-Y chromosomes of D. a. americana or the autosomes of D. a. texana. There is a significantly lower level of sequence diversity on the neo-Y chromosome relative to the neo-X in D. a. americana. This reduction in variability on the neo-Y does not appear to have resulted from a selective sweep. Coalescent simulations of the evolutionary transition of an autosome into a Y chromosome indicate there may be a low level of recombination between the neo-X and neo-Y alleles of Adh and that the effective population size of this chromosome may have been reduced below the expected value of 25% of the autosomal effective size, possibly because of the effects of background selection or sexual selection.