Project description:Size is a fundamental feature of biological systems that affects physiology at all levels. For example, the dynamic, microtubule-based spindle that mediates chromosome segregation scales to a wide range of cell sizes across different organisms and cell types. Xenopus frog species possess a variety of egg and meiotic spindle sizes, and differences in activities or levels of microtubule-associated proteins in the egg cytoplasm between Xenopus laevis and Xenopus tropicalis have been shown to account for spindle scaling [1]. Increased activity of the microtubule severing protein katanin scales the X. tropicalis spindle smaller compared to X. laevis [2], as do elevated levels of TPX2, a protein that enriches the cross-linking kinesin-5 motor Eg5 at spindle poles [3]. To examine the conservation of spindle scaling mechanisms more broadly across frog species, we have utilized the tiny, distantly related Pipid frog Hymenochirus boettgeri. We find that egg extracts from H. boettgeri form meiotic spindles similar in size to X. tropicalis but that TPX2 and katanin-mediated scaling is not conserved. Instead, the microtubule depolymerizing motor protein kif2a functions to modulate spindle size. H. boettgeri kif2a possesses an activating phosphorylation site that is absent from X. laevis. Comparison of katanin and kif2a phosphorylation sites across a variety of species revealed strong evolutionary conservation, with X. laevis and X. tropicalis possessing distinct and unique alterations. Our study highlights the diversity and complexity of spindle assembly and scaling mechanisms, indicating that there is more than one way to assemble a spindle of a particular size.
Project description:THE skin secretion of many amphibians contains peptides that are able to kill a broad range of microorganisms (antimicrobial peptides: AMPs) and potentially play a role in innate immune defense. Similar to the toxin arsenals of various animals, amphibian AMP repertoires typically show major structural variation, and previous studies have suggested that this may be the result of diversifying selection in adaptation to a diverse spectrum of pathogens. Here we report on transcriptome analyses that indicate a very different pattern in the dwarf clawed frog H. boettgeri. Our analyses reveal a diverse set of transcripts containing two to six tandem repeats, together encoding 14 distinct peptides. Five of these have recently been identified as AMPs, while three more are shown here to potently inhibit the growth of gram-negative bacteria, including multi-drug resistant strains of the medically important Pseudomonas aeruginosa. Although the number of predicted peptides is similar to the numbers of related AMPs in Xenopus and Silurana frog species, they show significantly lower structural variation. Selection analyses confirm that, in contrast to the AMPs of other amphibians, the H. boettgeri peptides did not evolve under diversifying selection. Instead, the low sequence variation among tandem repeats resulted from purifying selection, recent duplication and/or concerted gene evolution. Our study demonstrates that defense peptide repertoires of closely related taxa, after diverging from each other, may evolve under differential selective regimes, leading to contrasting patterns of structural diversity.
Project description:The pattern and sequence of the decomposition of the Pipidae African dwarf frog (Hymenochirus boettgeri) is tracked in an experiment with microbial mats in order to explore soft tissue preservation over three years. Frog decay in microbial mats is preceded by rapid entombment (25-30 days) and mediated by the formation of a sarcophagus, which is built by a complex microbial community. The frog carcasses maintained a variety of soft tissues for years. Labile organic structures show greater durability within the mat, cells maintain their general shape (bone marrow cells and adipocytes), and muscles and connective tissues (adipose and fibrous tendons) exhibit their original organic structures. In addition, other soft tissues are promptly mineralized (day 540) in a Ca-rich carbonate phase (encephalic tectum) or enriched in sulphur residues (integumentary system). The result is coherent with a bias in soft-tissue preservation, as some tissues are more likely to be conserved than others. The outcomes support observations of exceptionally preserved fossil anurans (adults and tadpoles). Decomposition in mats shows singular conditions of pH and dissolved oxygen. Mineralization processes could be more diverse than in simple heterotrophic biofilms, opening new taphonomic processes that have yet to be explored.