Project description:Halophytes are plants that can naturally tolerate high concentrations of salt in the soil, and their tolerance to salt stress may occur through various evolutionary and molecular mechanisms. Eutrema salsugineum is a halophytic species in the Brassicaceae that can naturally tolerate multiple types of abiotic stresses that typically limit crop productivity, including extreme salinity and cold. It has been widely used as a laboratorial model for stress biology research in plants. Here, we present the reference genome sequence (241?Mb) of E. salsugineum at 8× coverage sequenced using the traditional Sanger sequencing-based approach with comparison to its close relative Arabidopsis thaliana. The E. salsugineum genome contains 26,531 protein-coding genes and 51.4% of its genome is composed of repetitive sequences that mostly reside in pericentromeric regions. Comparative analyses of the genome structures, protein-coding genes, microRNAs, stress-related pathways, and estimated translation efficiency of proteins between E. salsugineum and A. thaliana suggest that halophyte adaptation to environmental stresses may occur via a global network adjustment of multiple regulatory mechanisms. The E. salsugineum genome provides a resource to identify naturally occurring genetic alterations contributing to the adaptation of halophytic plants to salinity and that might be bioengineered in related crop species.
Project description:Plants produce chemicals of immense diversity that provide great opportunities for development of new antifungal compounds. In search for environment-friendly alternatives to the fungicide of current use, we screened plant extracts obtained from more than eight hundred plant materials collected in Korea for their antifungal activity against the model plant pathogenic fungus, Magnaporthe oryzae. This initial screening identified antifungal activities from the eleven plant extract samples, among which nine showed reproducibility in the follow-up screening. These nine samples were able to suppress not only M. oryzae but also other fungal pathogens. Interestingly, the plant extracts obtained from Actinostemma lobatum comprised five out of eight samples, and were the most effective in their antifungal activity. We found that butanol fraction of the A. lobatum extract is the most potent. Identification and characterization of antifungal substances in the A. lobatum extracts would provide the promising lead compounds for new fungicide.
Project description:Salsola cyclophylla, an edible halophyte, is traditionally used for inflammation and pain. To confirm the claimed anti-inflammatory and analgesic properties, a detailed study on respective pharmacological actions was undertaken. The activities are contemplated to arise from its phytoconstituents. The LC-MS analysis of S. cyclophylla 95% aqueous-ethanolic extract revealed the presence of 52 compounds belonging to phenols, flavonoids, coumarins, and aliphatics class. A high concentration of Mn, Fe, and Zn was detected by atomic absorption spectroscopic analysis. The ethyl acetate extract showed the highest flavonoid contents (5.94 ± 0.04 mg/g, Quercetin Equivalents) and Fe2+-chelation (52%) potential with DPPH radicals-quenching IC50 at 1.35 ± 0.16 mg/mL, while the aqueous ethanolic extract exhibited maximum phenolics contents (136.08 ± 0.12 mg/g, gallic acid equivalents) with DPPH scavenging potential at IC50 0.615 ± 0.06 mg/mL. Aqueous ethanolic extract and standard quercetin DPPH radicals scavenging's were equal potent at 10 mg/mL concentrations. The aqueous ethanolic extract showed highest analgesic effect with pain reduction rates 89.86% (p = 0.03), 87.50% (p < 0.01), and 99.66% (p = 0.0004) after 60, 90, and 120 min, respectively. Additionally, aqueous ethanolic extract exhibited the highest anti-inflammation capacity at 41.07% (p < 0.0001), 34.51% (p < 0.0001), and 24.82% (p < 0.0001) after 2, 3, and 6 h of extract's administration, respectively. The phytochemical constituents, significant anti-oxidant potential, remarkable analgesic, and anti-inflammatory bioactivities of extracts supported the traditionally claimed anti-inflammatory and analgesic plant activities.
Project description:Kenyans have long utilized Ocimum kilimandscharicum, an East African permanent evergreen plant, to treat measles, stomachaches, diarrhea, mosquito bites (anti-insect), congested chest, cough, and colds. Using conventional qualitative and quantitative techniques, this study was done to identify the secondary metabolites in O. kilimandscharicum leaf extracts. The chemical content of the crude extracts from the leaves of O. kilimandscharicum has also been investigated and characterized using gas chromatography-mass spectrometry (GC-MS). By using a 1:20 dilution in methanol, in cold maceration, a fine powder of O. kilimandscharicum was first extracted then filtered and concentrated after 72 h utilizing a rotary evaporator. By using also a 1:20 dilution in water at 80 °C, a fine powder of O. kilimandscharicum was extracted and then filtrated and lyophilized 1 h later. Each extract underwent further gas chromatography-mass spectrometry testing. We found that both extracts contain secondary metabolites such as alkaloids, phenolics, flavonoids, saponins, and tannins. However, the overall amount of phytochemicals in each solvent varied significantly. Total phenolics contents (TPCs) were 5.6 ± 1.20 and 10.8 ± 1.00 mg, total flavonoid contents (TFCs) were 8.2 ± 0.4 and 39.6 ± 2.2 mg, total tannin contents (TTCs) were 0 ± 0.00 and 10.5 ± 0.4 mg, the total alkaloid content (TAC) was 49.2 ± 0.40%, and the total saponin content (TSC) was 38 ± 2.00%. Additionally the gas chromatography-mass spectrometry, revealed a number of high- and low-molecular-weight bioactive molecules at various concentrations for each extract. We also found an inhibitory effect on adhP and chbR gene expression of Staphylococcus aureus and Salmonella choleraesuius, respectively. Hence, these chemicals could potentially have a biological and pharmacological significance. Therefore, the discovery of many physiologically active chemicals in the leaf extracts of O. kilimandscharicum justifies future biological and pharmaceutical research.
Project description:This study investigates the impact of carbohydrate accumulation in mangrove and halophytic plants on their response to abiotic stress. Using soil analysis and FT-IR spectroscopy, key species (Sueda nudiflora, Aeluropus lagopoides, Avicennia marina) were examined for seasonal changes in sugar content (reducing sugars, total soluble sugars, starch). The elevated carbohydrate levels may serve as an indication of the plant's ability to adapt to different environmental conditions throughout the year. This accumulation enables plants to adapt to variations in their environment, assuring their survival and functionality during periods of environmental fluctuation. Halophytic plants' sugar content peaked during the monsoon, suggesting biotic adaptations. The mangrove Avicennia marina had year-round sugar levels. PCA and Hierarchical Cluster Analysis revealed sugar accumulation trends across species and seasons. Partial Least Squares (PLS) analysis revealed correlations between soil characteristics and sugar content, suggesting plant-microbe interactions. K-means clustering and correlation analysis of FT-IR data revealed sugar composition and resource allocation trade-offs. These findings shed light on the role of carbohydrate metabolism in enabling coastal plants to endure stress. Gaining insight into these mechanisms can enhance sustainable agriculture in challenging environments and shed light on plant adaptations to evolving environmental conditions, especially biotic interactions.
Project description:The recently demonstrated functionality of an aqueous quadrupole micro- or nano-trap opens a new avenue for applications of Paul traps, like confinement of a charged biomolecule which requires a water environment for its chemical stability. Besides the strong viscosity forces, the motion of a charged particle in the aqueous trap is subject to dielectrophoretic and electrophoretic forces. In this study, we describe the general conditions for stability of a charged particle in an aqueous quadrupole trap. We find that for typical micro-trap parameters, the effects of both dielectrophoresis and electrophoresis significantly influence the trap stability. In particular, an aqueous quadrupole trap could play the role of a synthetic virtual nanopore for the third generation of DNA sequencing technology.
Project description:To artificially construct a three-dimensional cell assembly, we investigated the availability of long-duration microdroplets that emerged near a critical point in an aqueous two-phase system (ATPS) with the hydrophilic binary polymers, polyethylene glycol (PEG), and dextran (DEX), as host containers. We found that erythrocytes (horse red blood cells; RBCs) and NAMRU mouse mammary gland epithelial cells (NMuMG cells) were completely and spontaneously entrapped inside DEX-rich microdroplets. RBCs and NMuMG cells were located in the interior and at the periphery of the droplets at PEG/DEX = 5%:5%. In contrast, the cells exhibited opposite localizations at PEG/DEX = 10%:5%, where, interestingly, NMuMG cells apparently assembled to achieve cell adhesion. We simply interpreted such specific localizations by considering the alternative responses of these cells to the properties of the PEG/DEX interfaces with different gradients in polymer concentrations.
Project description:Indiscriminate use of antibiotics can result in antibiotic residues in animal products; thus, plant compounds may be better alternative sources for mitigating methane (CH4) production. An in vitro screening experiment was conducted to evaluate the potential application of 152 dry methanolic or ethanolic extracts from 137 plant species distributed in East Asian countries as anti-methanogenic additives in ruminant feed. The experimental material consisted of 200 mg total mixed ration, 20 mg plant extract, and 30 mL diluted ruminal fluid-buffer mixture in 60 mL serum bottles that were sealed with rubber stoppers and incubated at 39 °C for 24 h. Among the tested extracts, eight extracts decreased CH4 production by >20%, compared to the corresponding controls: stems of Vitex negundo var. incisa, stems of Amelanchier asiatica, fruit of Reynoutria sachalinensis, seeds of Tribulus terrestris, seeds of Pharbitis nil, leaves of Alnus japonica, stem and bark of Carpinus tschonoskii, and stems of Acer truncatum. A confirmation assay of the eight plant extracts at a dosage of 10 mg with four replications repeated on 3 different days revealed that the extracts decreased CH4 concentration in the total gas (7-15%) and total CH4 production (17-37%), compared to the control. This is the first report to identify the anti-methanogenic activities of eight potential plant extracts. All extracts decreased ammonia (NH3-N) concentrations. Negative effects on total gas and volatile fatty acid (VFA) production were also noted for all extracts that were rich in hydrolysable tannins and total saponins or fatty acids. The underlying modes of action differed among plants: extracts from P. nil, V. negundo var. incisa, A. asiatica, and R. sachalinensis resulted in a decrease in total methanogen or the protozoan population (p < 0.05) but extracts from other plants did not. Furthermore, extracts from P. nil decreased the population of total protozoa and increased the proportion of propionate among VFAs (p < 0.05). Identifying bioactive compounds in seeds of P. nil by gas chromatography-mass spectrometry analysis revealed enrichment of linoleic acid (18:2). Overall, seeds of P. nil could be a possible alternative to ionophores or oil seeds to mitigate ruminal CH4 production.
Project description:Plant extract is a mixture of diverse phytochemicals, and considered as an important resource for drug discovery. However, large-scale exploration of the bioactive extracts has been hindered by various obstacles until now. In this research, we have introduced and evaluated a new computational screening strategy that classifies bioactive compounds and plants in semantic space generated by word embedding algorithm. The classifier showed good performance in binary (presence/absence of bioactivity) classification for both compounds and plant genera. Furthermore, the strategy led to the discovery of antimicrobial activity of essential oils from Lindera triloba and Cinnamomum sieboldii against Staphylococcus aureus. The results of this study indicate that machine-learning classification in semantic space can be a highly efficient approach for exploring bioactive plant extracts.