Project description:The green rice leafhopper Nephotettix cincticeps have two mutualistic symbiotic bacteria (Candidatus Sulcia muelleri and Candidatus Nasuia deltocephalinicola) in its symbiont special organ bacteriome and are also infected to rickettsia. In order to determine immune challenge is induced or not by rickettsia infection in N. cincticeps, we investigated gene expression between rickettsia-infected and rifampicin treated uninfected N. cincticeps colonies.
Project description:Comparison of gene expression between the virulent Rickettsia rickettsii R strain and avirulent Rickettsia rickettsii Iowa. Keywords: virulent vs avirulent Virulent Rickettsia rickettsii R strain in triplicate was compared to avirulent Rickettsia rickettsii Iowa in triplicate
Project description:Spotted Fever Group Rickettsiae (SFGR) can cause mild to fatal illness. The early interaction between the host and rickettsia in skin is largely unknown, and the pathogenesis of severe rickettsiosis remains an important topic. A surveillance of SFGR infection by PCR of blood and skin biopsies followed by sequencing, and immunohistochemical detection was performed on patients with a recent tick bite from 2013–2016. Humoral and cutaneous immune profiles were evaluated for different SFGR cases by serum cytokine and chemokine detection, skin immunohistochemical (IHC) staining, and transcriptome sequencing (RNA-seq). A total of 111 SFGR cases were identified, including 79 Candidatus Rickettsia tarasevichiae (CRT), 22 R. raoultii, 8 R. sibirica, and 2 R. heilongjiangensis. The sensitivity to detect SFGR in skin biopsies (9/24, 37.5 %) was significantly higher than in blood samples (105/2671, 3.9 %) (p<0.05). As early as one day after the tick bite, rickettsia could be detected in the skin. R. sibirica infection was more severe than CRT and R. raoultii. Increased levels of serum IL18, IP10, and MIG, and decreased IL2 in R. sibirica febrile patients were observed compared to CRT febrile infections. RNA-seq and IHC staining could not discriminate SFGR infected and uninfected tick-fed skin lesions. The type I interferon (IFN) response was differently expressed between R. sibirica and R. raoultii infection at the cutaneous interface. Severe rickettsiosis might be inclined to induce an increased type I IFN response on the infected skin but which were complicated by the bite of a tick eliciting immune cell infiltration.
Project description:We have previously reported that Rickettsia conorii and Rickettsia montanensis have distinct intracellular fates within THP-1 macrophages, suggesting that the ability to proliferate within macrophages may be a distinguishable factor between pathogenic and non-pathogenic Spotted fever group (SFG) members. To start unraveling the molecular mechanisms underlying the capacity (or not) of SFG Rickettsia to establish their replicative niche in macrophages, we have herein profiled the host proteomic alterations resulted by the infection of THP-1 macrophages with R. conorii and R. montanensis using a high throughput quantitative proteomics approach (SWATH-MS). Our results revealed that these two members of SFG Rickettsia with distinct pathogenicity attributes for humans, trigger differential proteomic signatures in macrophage-like cells. Although infection by both rickettsial species resulted in a lower abundance of enzymes of glycolysis and pentose phosphate pathway, the pathogenic R. conorii specifically induced the accumulation of several enzymes of the tricarboxylic acid cycle, oxidative phosphorylation, fatty acid -oxidation and glutaminolysis, as well as of several inner and outer membrane mitochondrial transporters. These results suggest a profound metabolic rewriting of macrophages by R. conorii towards a metabolic signature of an M2-like (anti-inflammatory) activation program. Moreover, our results revealed that several subunits forming the proteasome and immunoproteasome are found in lower abundance upon infection with both rickettsial species, which may help bacteria to escape immune surveillance. Remarkably, R. conorii-infection specifically induced the accumulation of several host proteins implicated in protein processing and quality control in ER, suggesting that this pathogenic Rickettsia may be able to compensate the accumulation of misfolded proteins by increasing the ER protein folding capacity and subsequently restore host cell homeostasis. This work reveals novel aspects of macrophage-Rickettsia interactions, expanding our knowledge of how pathogenic rickettsiae explore host cells to their advantage.
Project description:Rickettsia spp. can cause mild to severe human disease. These intracellular bacteria are associated with arthropods, nematodes and trematodes, and usually, are efficiently transmitted transovarially to the progeny of the invertebrate host. We recently demonstrated foreign gene acquisition by lateral gene transfer in Rickettsia genomes. The unexpected presence of laterally transferred toxin-antitoxin (TA) genetic elements (including vapBC) in several Rickettsia genomes has not been connected with the pathogenic process or the host-bacteria relationship. We suspect that vapBC are selfish genetic elements that addict eukaryotic hosts to Rickettsia. We identified a statistical link between the transovarial transmission of Rickettsia in invertebrate hosts and the presence of TA operons, specifically vapBC, in the Rickettsia genome. These TA are neighboring to type IV secretion genes. Tunel assays and whole-genome expression of infected cells showed that antibiotic eradication of TA-containing Rickettsia from the host in cell culture initiates a proapoptotic program. Rickettsia VapC toxins inhibit the growth of transformed Escherichia coli and Saccharomyces cerevisiae. Rickettsia toxin presents in vitro RNase activity. Annexin-V staining and time-lapse video showed that intracytoplasmic injections of VapC toxins in cells cause apoptosis. These data demonstrate that host cells may develop a dependence on Rickettsia spp. expressing the vapBC operon. This would constitute a new evolutionary “mafia strategy” of intracellular bacteria based on host addiction.
Project description:Rickettsia conorii is the etiologic agent of Mediterranean spotted fever, a re-emerging disease with significant mortality. This obligate, gram-negative intracellular pathogen is transmitted via tick bites, resulting in disseminated vascular endothelial cell infection with vascular leakage. In the infected human, Rickettsia conorii infects endothelial cells, stimulating expression of cytokines and pro-coagulant factors. However, the integrated proteomic response of human endothelial cells to R. conorii infection is not known. In this study, we performed quantitative proteomic profiling of R conorii –infected primary HUVECs vs those stimulated with LPS alone.