Project description:Castanopsis fissa is an evergreen broad-leaved species of the cone genus Castanopsis in the family Fagaceae, which is widely distributed and is an excellent native species in Guangdong Province of China. This species has a well-developed root system, excellent soil-fixing power, and better soil and water conservation ability and has the characteristics of barren tolerance, strong sprouting power, abundant and easily decomposed dead leaves, etc. Therefore, C. fissa is not only a pioneer species for postdestruction sprouting forests but also a highly potential ecological public welfare forest tree species. Moreover, due to its beautiful shape, wide canopy and various colors, it has become an ideal tree for landscaping and ornamental purposes. However, there is a basic gap in knowledge in the reports on the drought resistance or drought tolerance genes of C. fissa. Based on the above details, in this study, 2-year-old C. fissa seedlings were used as the study material to investigate the physiological response under drought stress by a potted drought experiment, and we also compared and analyzed the differentially expressed proteins (DEPs) under different periods of drought stress by TMT quantitative labeling protein to prepare a preliminary study on the physiological response and proteomic mechanism of C. fissa adaptation to drought stress.
Project description:A comparision of soil microbial functional genes of three types of subtropical broad-leaved forests Microbial functional structure was significantly different among SBFs (P < 0.05). Compared to the DBF and the EBF, the MBF had higher alpha-diversity of functional genes but lower beta-diversity, and showed more complex functional gene networks.
Project description:Many trees form ectomycorrhizal symbiosis with fungi. During symbiosis, the tree roots supply sugar to the fungi in exchange for nitrogen, and this process is critical for the nitrogen and carbon cycles in forest ecosystems. However, the extents to which ectomycorrhizal fungi can liberate nitrogen and modify the soil organic matter and the mechanisms by which they do so remain unclear since they have lost many enzymes for litter decomposition that were present in their free-living, saprotrophic ancestors. Using time-series spectroscopy and transcriptomics, we examined the ability of two ectomycorrhizal fungi from two independently evolved ectomycorrhizal lineages to mobilize soil organic nitrogen. Both species oxidized the organic matter and accessed the organic nitrogen. The expression of those events was controlled by the availability of glucose and inorganic nitrogen. Despite those similarities, the decomposition mechanisms, including the type of genes involved as well as the patterns of their expression, differed markedly between the two species. Our results suggest that in agreement with their diverse evolutionary origins, ectomycorrhizal fungi use different decomposition mechanisms to access organic nitrogen entrapped in soil organic matter. The timing and magnitude of the expression of the decomposition activity can be controlled by the below-ground nitrogen quality and the above-ground carbon supply.
2018-11-30 | GSE110485 | GEO
Project description:Soil microbial communities between exotic and native tree species plantations in south subtropical China
Project description:Nitrogen (N) remobilization is an important physiological process that supports the growth and development of trees. However, in evergreen broad-leaved tree species, such as citrus, the mechanisms of N remobilization are not completely understood. Therefore, we studied the processes of N remobilization from mature to senescing citrus leaves under low and high N nutrition.
Project description:Fungal necromass in soil represents the stable carbon pools. While fungi are known to decompose fungal necromass, how fungi decomopose melanin, remains poorly understood. Recently, Trichoderma species was found to be one of the most commonly associated fungi in soil, we have used a relevant fungal species, Trichoderma reesei, to characterized Genes involved in the decomposition of melanized and non-melanized necromass from Hyaloscypha bicolor.
2024-05-01 | GSE263516 | GEO
Project description:Eucalyptus soil fungi
| PRJNA774151 | ENA
Project description:Distinct successional trajectories following logging among different soil microbial guilds in a conifer and broad-leaved mixed forest-fungi plus