biostudies-arrayexpress00590Elizabeth JoyceStreptococcus pneumoniaehttps://www.ebi.ac.uk/biostudies/studies/E-GEOD-3107Streptococcus pneumoniae normally resides in the human nasopharynx in a non-disease state. In response to yet unknown triggers it can descend to the lower respiratory tract and/or invade the bloodstream. Regulation and activation of virulence genes play essential roles in this process of disease development. A putative transcriptional regulator in S. pneumoniae, MgrA, with homology to a virulence gene activator, mga, of Group A streptococcus (GAS) was previously identified as being required for development of pneumonia in a murine model. In this work we confirm that mgrA is required for both nasopharyngeal carriage and pneumonia. Transcriptional profiling by microarray technology through the growth course of a strain that bears a deletion of mgrA (AC1500) with that of a strain that over expresses Mgra (AC1481) is used to show that MgrA . This is manifested phenotypically by a decrease in adherence to epithelial cells in tissue culture since rlrA pathogenicity islet contains genes mediating adherence. Set of arrays organized by shared biological context, such as organism, tumors types, processes, etc. Computedbiostudies-arrayexpressMIAME ScoreAssays and DataProcessed DataMAGE-TAB FilesArray DesignsFeature Extraction - VALUE is Log (base 2) of the ratio of the median of Channel 2 (usually 635 nm) to Channel 1 (usually 532 nm)Assay Data Transformation - ID_REF = ID_REF<br>CH1I_MEAN = Mean feature pixel intensity at wavelength 532 nm.; Type: integer; Scale: linear_scale<br>CH2I_MEAN = Mean feature pixel intensity at wavelength 635 nm.; Type: integer; Scale: linear_scale<br>CH1B_MEDIAN = The median feature background intensity at wavelength 532 nm.; Type: integer; Scale: linear_scale; Channel: Cy3 Channel; Background<br>CH2B_MEDIAN = The median feature background intensity at wavelength 635 nm.; Type: integer; Scale: linear_scale; Channel: Cy5 channel; Background<br>CH1D_MEAN = The mean feature pixel intensity at wavelength 532 nm with the median background subtracted.; Type: integer; Scale: linear_scale; Channel: Cy3 Channel<br>CH2D_MEAN = .The mean feature pixel intensity at wavelength 635 nm with the median background subtracted.; Type: integer; Scale: linear_scale; Channel: Cy5 channel<br>CH1I_MEDIAN = Median feature pixel intensity at wavelength 532 nm.; Type: integer; Scale: linear_scale<br>CH2I_MEDIAN = Median feature pixel intensity at wavelength 635 nm.; Type: integer; Scale: linear_scale<br>CH1B_MEAN = The mean feature background intensity at wavelength 532 nm.; Type: integer; Scale: linear_scale; Background<br>CH2B_MEAN = The mean feature background intensity at wavelength 635 nm.; Type: integer; Scale: linear_scale; Background<br>CH1D_MEDIAN = The median feature pixel intensity at wavelength 532 nm with the median background subtracted.; Type: integer; Scale: linear_scale<br>CH2D_MEDIAN = The median feature pixel intensity at wavelength 635 nm with the median background subtracted.; Type: integer; Scale: linear_scale<br>CH1_PER_SAT = The percentage of feature pixels at wavelength 532 nm that are saturated.; Type: integer; Scale: linear_scale<br>CH2_PER_SAT = The percentage of feature pixels at wavelength 635 nm that are saturated.; Type: integer; Scale: linear_scale<br>CH1I_SD = The standard deviation of the feature intensity at wavelength 532 nm.; Type: integer; Scale: linear_scale; Channel: Cy3 Channel<br>CH2I_SD = The standard deviation of the feature pixel intensity at wavelength 635 nm.; Type: integer; Scale: linear_scale; Channel: Cy5 channel<br>CH1B_SD = The standard deviation of the feature background intensity at wavelength 532 nm.; Type: float; Scale: linear_scale; Channel: Cy3 Channel; Background<br>CH2B_SD = The standard deviation of the feature background intensity at wavelength 635 nm.; Type: integer; Scale: linear_scale; Channel: Cy5 channel; Background<br>PERGTBCH1I_1SD = The percentage of feature pixels with intensities more than one standard deviation above the background pixel intensity, at wavelength 532 nm.; Type: integer; Scale: linear_scale<br>PERGTBCH2I_1SD = The percentage of feature pixels with intensities more than one standard deviation above the background pixel intensity, at wavelength 635 nm.; Type: integer; Scale: linear_scale<br>PERGTBCH1I_2SD = The percentage of feature pixels with intensities more than two standard deviations above the background pixel intensity, at wavelength 532 nm.; Type: integer; Scale: linear_scale<br>PERGTBCH2I_2SD = The percentage of feature pixels with intensities more than two standard deviations above the background pixel intensity, at wavelength 532 nm.; Type: integer; Scale: linear_scale<br>SUM_MEAN = The sum of the arithmetic mean intensities for each wavelength, with the median background subtracted.; Type: integer; Scale: linear_scale<br>SUM_MEDIAN = The sum of the median intensities for each wavelength, with the median background subtracted.; Type: integer; Scale: linear_scale<br>RAT1_MEAN = Ratio of the arithmetic mean intensities of each spot for each wavelength, with the median background subtracted. Channel 1/Channel 2 ratio, (CH1I_MEAN - CH1B_MEDIAN)/(CH2I_MEAN - CH2B_MEDIAN) or Green/Red ratio.; Type: float; Scale: linear_scale<br>RAT2_MEAN = The ratio of the arithmetic mean intensities of each feature for each wavelength, with the median background subtracted.; Type: float; Scale: linear_scale<br>RAT2_MEDIAN = The ratio of the median intensities of each feature for each wavelength, with the median background subtracted.; Type: float; Scale: linear_scale<br>PIX_RAT2_MEAN = The geometric mean of the pixel-by-pixel ratios of pixel intensities, with the median background subtracted.; Type: float; Scale: linear_scale<br>PIX_RAT2_MEDIAN = The median of pixel-by-pixel ratios of pixel intensities, with the median background subtracted.; Type: float; Scale: linear_scale<br>RAT2_SD = The geometric standard deviation of the pixel intensity ratios.; Type: float; Scale: linear_scale<br>TOT_SPIX = The total number of feature pixels.; Type: integer; Scale: linear_scale<br>TOT_BPIX = The total number of background pixels.; Type: integer; Scale: linear_scale<br>REGR = The regression ratio of every pixel in a 2-feature-diameter circle around the center of the feature.; Type: float; Scale: linear_scale<br>CORR = The correlation between channel1 (Cy3) & Channel 2 (Cy5) pixels within the spot, and is a useful quality control parameter. Generally, high values imply better fit & good spot quality.; Type: float; Scale: linear_scale<br>DIAMETER = The diameter in um of the feature-indicator.; Type: integer; Scale: linear_scale<br>X_COORD = X-coordinate of the center of the spot-indicator associated with the spot, where (0,0) is the top left of the image.; Type: integer; Scale: linear_scale<br>Y_COORD = Y-coordinate of the center of the spot-indicator associated with the spot, where (0,0) is the top left of the image.; Type: integer; Scale: linear_scale<br>TOP = Box top: int(((centerX - radius) - Xoffset) / pixelSize).; Type: integer; Scale: linear_scale<br>BOT = Box bottom: int(((centerX + radius) - Xoffset) / pixelSize).; Type: integer; Scale: linear_scale<br>LEFT = Box left: int(((centerY - radius) - yoffset) / pixelSize).; Type: integer; Scale: linear_scale<br>RIGHT = Box right: int(((centerY + radius) - yoffset) / pixelSize); Type: integer; Scale: linear_scale<br>FLAG = The type of flag associated with a feature: -100 = user-flagged null spot; -50 = software-flagged null spot; 0 = spot valid.; Type: integer; Scale: linear_scale<br>CH2IN_MEAN = Normalized value of mean Channel 2 (usually 635 nm) intensity (CH2I_MEAN/Normalization factor).; Type: integer; Scale: linear_scale; Channel: Cy5 channel<br>CH2BN_MEDIAN = Normalized value of median Channel 2 (usually 635 nm) background (CH2B_MEDIAN/Normalization factor).; Type: integer; Scale: linear_scale; Channel: Cy5 channel; Background<br>CH2DN_MEAN = Normalized value of mean Channel 2 (usually 635 nm) intensity with normalized background subtracted (CH2IN_MEAN - CH2BN_MEDIAN).; Type: integer; Scale: linear_scale; Channel: Cy5 channel<br>RAT2N_MEAN = Type: float; Scale: linear_scale<br>CH2IN_MEDIAN = Normalized value of median Channel 2 (usually 635 nm) intensity (CH2I_MEDIAN/Normalization factor).; Type: integer; Scale: linear_scale<br>CH2DN_MEDIAN = Normalized value of median Channel 2 (usually 635 nm) intensity with normalized background subtracted (CH2IN_MEDIAN - CH2BN_MEDIAN).; Type: integer; Scale: linear_scale<br>RAT1N_MEAN = Ratio of the means of Channel 1 (usually 532 nm) intensity to normalized Channel 2 (usually 635 nm) intensity with median background subtracted (CH1D_MEAN/CH2DN_MEAN). Channel 1/Channel 2 ratio normalized or Green/Red ratio normalized.; Type: float; Scale: linear_scale<br>RAT2N_MEDIAN = Channel 2/Channel 1 ratio normalized, RAT2_MEDIAN/Normalization factor or Red/Green median ratio normalized.; Type: float; Scale: linear_scale<br>LOG_RAT2N_MEAN = Log (base 2) of the ratio of the mean of Channel 2 (usually 635 nm) to Channel 1 (usually 532 nm) [log (base 2) (RAT2N_MEAN)].; Type: float; Scale: log_base_2<br>VALUE = same as UNF_VALUE but with flagged values removed<br>UNF_VALUE = Log (base 2) of the ratio of the median of Channel 2 (usually 635 nm) to Channel 1 (usually 532 nm) [log (base 2) (RAT2N_MEDIAN)].; Type: float; Scale: log_base_2UnknownTranscriptomicsGenomicsProteomicsStreptococcus pneumoniae normally resides in the human nasopharynx in a nondisease state. In response to unknown triggers this organism can descend to the lower respiratory tract and/or invade the bloodstream. Regulation and activation of virulence genes play essential roles in this process of disease development. Characterization of S. pneumoniae regulatory networks has been a recent area of interest, but despite inroads little is known about regulation of virulence genes in this pathogen. A putative transcriptional regulator in S. pneumoniae, mgrA, which exhibits homology to the virulence gene activator mga of group A streptococcus, was previously identified as a regulator that is required for development of pneumonia in a murine model. In this study we confirmed that mgrA plays a role in both nasopharyngeal carriage and pneumonia. Transcriptional profiling by microarray technology was used to show that mgrA acts as a repressor of the previously characterized rlrA pathogenicity islet. This is manifested phenotypically by a decrease in adherence to epithelial cells in tissue culture since the rlrA pathogenicity islet contains genes mediating adherence.unknown experiment typeStreptococcus pneumoniaeMgrA, an orthologue of Mga, Acts as a transcriptional repressor of the genes within the rlrA pathogenicity islet in Streptococcus pneumoniae.Elizabeth JoyceHemsley C, Joyce E, Hava DL, Kawale A, Camilli A59falsemgrA acts as a repressor of the rlrA pathogenicity isletStreptococcus pneumoniae normally resides in the human nasopharynx in a non-disease state. In response to yet unknown triggers it can descend to the lower respiratory tract and/or invade the bloodstream. Regulation and activation of virulence genes play essential roles in this process of disease development. A putative transcriptional regulator in S. pneumoniae, MgrA, with homology to a virulence gene activator, mga, of Group A streptococcus (GAS) was previously identified as being required for development of pneumonia in a murine model. In this work we confirm that mgrA is required for both nasopharyngeal carriage and pneumonia. Transcriptional profiling by microarray technology through the growth course of a strain that bears a deletion of mgrA (AC1500) with that of a strain that over expresses Mgra (AC1481) is used to show that MgrA . This is manifested phenotypically by a decrease in adherence to epithelial cells in tissue culture since rlrA pathogenicity islet contains genes mediating adherence. Set of arrays organized by shared biological context, such as organism, tumors types, processes, etc. ComputedE-GEOD-3107GSE310714594838