Transcriptomics

Dataset Information

2

Expression profiling of Bmal mutant dorsal skin at telogen of hair follicle cycling


ABSTRACT: Hair follicles undergo recurrent cycling of controlled growth (anagen), regression (catagen), and relative quiescence (telogen) with a defined periodicity. Taking a genomics approach to study gene expression during synchronized mouse hair follicle cycling, we discovered that, in addition to circadian fluctuation, CLOCK-regulated genes are also modulated in phase with the hair growth cycle. During telogen and early anagen, circadian clock genes are prominently expressed in the secondary hair germ, which contains precursor cells for the growing follicle. Analysis of Clock and Bmal1 mutant mice reveals a delay in anagen progression, and the secondary hair germ cells show decreased levels of phosphorylated Rb and lack mitotic cells, suggesting that circadian clock genes regulate anagen progression via their effect on the cell cycle. Consistent with a block at the G1 phase of the cell cycle, we show a significant upregulation of p21 in Bmal1 mutant skin. While circadian clock mechanisms have been implicated in a variety of diurnal biological processes, our findings indicate that circadian clock genes may be utilized to modulate the progression of non-diurnal cyclic processes. To gain molecular understanding of the the hair cycle delay in Bmal mutant mice, we profiled the dorsal skin of Bmal knockout (-/-) and their heterozygous (+/-) littermates at P22. At P22, the skin samples are comparable because all the samples are in telogen just prior to the hair cycle delay was observed. Histological sections were used to classify each sample into specific stage of the hair growth cycle based on established morphological guidelines. RNA from each mouse dorsal skin were separately hybridized to an Affymetrix Mouse Gene 1.0 ST array.

ORGANISM(S): Mus musculus  

SUBMITTER: Ralf Paus   Alexander T Ihler  Mikhail Geyfman  Kevin K Lin  Padhraic Smyth  Darya Chudova  Bogi Andersen  Joseph S Takahashi  Vivek Kumar 

PROVIDER: E-GEOD-14006 | ArrayExpress | 2010-04-08

SECONDARY ACCESSION(S): GSE14006PRJNA112465

REPOSITORIES: GEO, ArrayExpress

altmetric image

Publications

Circadian clock genes contribute to the regulation of hair follicle cycling.

Lin Kevin K KK   Kumar Vivek V   Geyfman Mikhail M   Chudova Darya D   Ihler Alexander T AT   Smyth Padhraic P   Paus Ralf R   Takahashi Joseph S JS   Andersen Bogi B  

PLoS genetics 20090724 7


Hair follicles undergo recurrent cycling of controlled growth (anagen), regression (catagen), and relative quiescence (telogen) with a defined periodicity. Taking a genomics approach to study gene expression during synchronized mouse hair follicle cycling, we discovered that, in addition to circadian fluctuation, CLOCK-regulated genes are also modulated in phase with the hair growth cycle. During telogen and early anagen, circadian clock genes are prominently expressed in the secondary hair germ  ...[more]

Similar Datasets

2009-07-17 | GSE14006 | GEO
2009-07-17 | GSE13579 | GEO
2009-07-17 | E-GEOD-13579 | ArrayExpress
2009-07-17 | GSE11186 | GEO
2009-07-17 | E-GEOD-11186 | ArrayExpress
2012-08-01 | E-GEOD-38624 | ArrayExpress
2012-08-01 | E-GEOD-38622 | ArrayExpress
| GSE85039 | GEO
| GSE69501 | GEO
2017-05-15 | E-GEOD-29546 | ArrayExpress