Transcriptomics

Dataset Information

3

The Rpd3L HDAC complex is essential for the heat stress response in yeast


ABSTRACT: To ensure cell survival and growth during temperature increase, eukaryotic organisms respond with transcriptional activation that results in accumulation of proteins that protect against damage, and facilitate recovery. To define the global cellular adaptation response to heat stress, we performed a systematic genetic screen that yielded 277 yeast genes required for growth at high temperature. Of these, the Rpd3 histone deacetylase complex was enriched. Global gene expression analysis showed that Rpd3 partially regulated gene expression upon heat shock. The Hsf1 and Msn2/4 transcription factors are the main regulators of gene activation in response to heat stress. RPD3-deficient cells had impaired activation of Msn2/4-dependent genes, while activation of genes controlled by Hsf1 was deacetylase independent. Rpd3 bound to heat stress-dependent promoters through the Msn2/4 transcription factors, allowing entry of RNA Pol II and activation of transcription upon stress. Finally, we found that the large, but not the small Rpd3 complex regulated cell adaptation in response to heat stress. Three independent 200 ml cultures of wild-type and rpd3Δ mutant strains were grown to mid-log phase in YPD rich medium at 25ºC (control) or at 39 ºC for 20 min (heat stressed). Results were analyzed comparing thermo-responsive gene expression respect to the control in each individual strain.

ORGANISM(S): Saccharomyces cerevisiae  

SUBMITTER: Eulalia de Nadal   Eulàlia de Nadal  Cristina Vieitez  Francesc Posas  Clàudia Ruiz-Roig 

PROVIDER: E-GEOD-17514 | ArrayExpress | 2010-04-23

SECONDARY ACCESSION(S): GSE17514PRJNA118787

REPOSITORIES: GEO, ArrayExpress

altmetric image

Publications

The Rpd3L HDAC complex is essential for the heat stress response in yeast.

Ruiz-Roig Clàudia C   Viéitez Cristina C   Posas Francesc F   de Nadal Eulàlia E  

Molecular microbiology 20100414 4


To ensure cell survival and growth during temperature increase, eukaryotic organisms respond with transcriptional activation that results in accumulation of proteins that protect against damage and facilitate recovery. To define the global cellular adaptation response to heat stress, we performed a systematic genetic screen that yielded 277 yeast genes required for growth at high temperature. Of these, the Rpd3 histone deacetylase complex was enriched. Global gene expression analysis showed that  ...[more]

Similar Datasets

2010-04-23 | GSE17514 | GEO
2012-09-20 | E-GEOD-41005 | ArrayExpress
2015-02-20 | E-GEOD-57397 | ArrayExpress
2012-10-30 | E-GEOD-41451 | ArrayExpress
| GSE108736 | GEO
2016-10-24 | E-GEOD-72806 | ArrayExpress
| GSE122666 | GEO
2016-03-01 | E-GEOD-71708 | ArrayExpress
2017-05-17 | E-MTAB-5753 | ArrayExpress
2015-02-20 | E-GEOD-57398 | ArrayExpress