Project description:BubR1 acetylation is essential in mitosis. Mice heterozygous for the acetylation-deficient BubR1 allele (K243R/+) spontaneously developed tumors with massive chromosome missegregations. K243R/+ mouse embryonic fibroblasts (MEFs) exhibited a weakened spindle assembly checkpoint (SAC) with shortened mitotic timing. The generation of the SAC signal was intact, as Mad2 localization to the unattached kinetochore (KT) was unaltered; however, because of the premature degradation of K243R-BubR1, the mitotic checkpoint complex disassociated prematurely in the nocodazole-treated condition, suggesting that maintenance of the SAC is compromised. BubR1 acetylation was also required to counteract excessive Aurora B activity at the KT for stable chromosome-spindle attachments. The association of acetylation-deficient BubR1 with PP2A-B56α phosphatase was reduced, and the phosphorylated Ndc80 at the KT was elevated in K243R/+ MEFs. In relation, there was a marked increase of micronuclei and p53 mutation was frequently detected in primary tumors of K243R/+ mice. Collectively, the combined effects of failure in chromosome-spindle attachment and weakened SAC cause genetic instability and cancer in K243R/+ mice.
Project description:The spindle assembly checkpoint (SAC) prevents premature sister chromatid separation during mitosis. Phosphorylation of unattached kinetochores by the Mps1 kinase promotes recruitment of SAC machinery that catalyzes assembly of the SAC effector mitotic checkpoint complex (MCC). The SAC protein Bub3 is a phospho-amino acid adaptor that forms structurally related stable complexes with functionally distinct paralogs named Bub1 and BubR1. A short motif ("loop") of Bub1, but not the equivalent loop of BubR1, enhances binding of Bub3 to kinetochore phospho-targets. Here, we asked whether the BubR1 loop directs Bub3 to different phospho-targets. The BubR1 loop is essential for SAC function and cannot be removed or replaced with the Bub1 loop. BubR1 loop mutants bind Bub3 and are normally incorporated in MCC in vitro but have reduced ability to inhibit the MCC target anaphase-promoting complex (APC/C), suggesting that BubR1:Bub3 recognition and inhibition of APC/C requires phosphorylation. Thus, small sequence differences in Bub1 and BubR1 direct Bub3 to different phosphorylated targets in the SAC signaling cascade.
Project description:Interference with microtubule dynamics in mitosis activates the spindle assembly checkpoint (SAC) to prevent chromosome segregation errors. The SAC induces mitotic arrest by inhibiting the anaphase-promoting complex (APC) via the mitotic checkpoint complex (MCC). The MCC component MAD2 neutralises the critical APC cofactor, CDC20, preventing exit from mitosis. Extended mitotic arrest can promote mitochondrial apoptosis and caspase activation. However, the impact of mitotic cell death on tissue homoestasis in vivo is ill-defined. By conditional MAD2 overexpression, we observe that chronic SAC activation triggers bone marrow aplasia and intestinal atrophy in mice. While myelosuppression can be compensated for, gastrointestinal atrophy is detrimental. Remarkably, deletion of pro-apoptotic Bim/Bcl2l11 prevents gastrointestinal syndrome, while neither loss of Noxa/Pmaip or co-deletion of Bid and Puma/Bbc3 has such a protective effect, identifiying BIM as rate-limiting apoptosis effector in mitotic cell death of the gastrointestinal epithelium. In contrast, only overexpression of anti-apoptotic BCL2, but none of the BH3-only protein deficiencies mentioned above, can mitigate myelosuppression. Our findings highlight tissue and cell type-specific survival dependencies in response to SAC perturbation in vivo.
Project description:The Knl1-Mis12-Ndc80 (KMN) network is an essential component of the kinetochore-microtubule attachment interface, which is required for genomic stability in eukaryotes. However, little is known about plant Knl1 proteins because of their complex evolutionary history. Here, we cloned the Knl1 homolog from maize (Zea mays) and confirmed it as a constitutive central kinetochore component. Functional assays demonstrated their conserved role in chromosomal congression and segregation during nuclear division, thus causing defective cell division during kernel development when Knl1 transcript was depleted. A 145 aa region in the middle of maize Knl1, that did not involve the MELT repeats, was associated with the interaction of spindle assembly checkpoint (SAC) components Bub1/Mad3 family proteins 1 and 2 (Bmf1/2) but not with the Bmf3 protein. They may form a helical conformation with a hydrophobic interface with the TPR domain of Bmf1/2, which is similar to that of vertebrates. However, this region detected in monocots shows extensive divergence in eudicots, suggesting that distinct modes of the SAC to kinetochore connection are present within plant lineages. These findings elucidate the conserved role of the KMN network in cell division and a striking dynamic of evolutionary patterns in the SAC signaling and kinetochore network.
Project description:Fanconi anemia (FA) is a heterogenous genetic disease with a high risk of cancer. The FA proteins are essential for interphase DNA damage repair; however, it is incompletely understood why FA-deficient cells also develop gross aneuploidy, leading to cancer. Here, we systematically evaluated the role of the FA proteins in chromosome segregation through functional RNAi screens and analysis of primary cells from patients with FA. We found that FA signaling is essential for the spindle assembly checkpoint and is therefore required for high-fidelity chromosome segregation and prevention of aneuploidy. Furthermore, we discovered that FA proteins differentially localize to key structures of the mitotic apparatus in a cell cycle-dependent manner. The essential role of the FA pathway in mitosis offers a mechanistic explanation for the aneuploidy and malignant transformation known to occur after disruption of FA signaling. Collectively, our findings provide insight into the genetically unstable cancers resulting from inactivation of the FA/BRCA pathway.
Project description:Disrupting microtubule dynamics with spindle poisons activates the spindle-assembly checkpoint (SAC) and induces mitotic cell death. However, mitotic exit can occur prematurely without proper chromosomal segregation or cytokinesis by a process termed mitotic slippage. It remains controversial whether mitotic slippage increases the cytotoxicity of spindle poisons or the converse. Altering the SAC induces either mitotic cell death or mitotic slippage. While knockout of MAD2-binding protein p31comet strengthened the SAC and promoted mitotic cell death, knockout of TRIP13 had the opposite effect of triggering mitotic slippage. We demonstrated that mitotic slippage prevented mitotic cell death caused by spindle poisons, but reduced subsequent long-term survival. Weakening of the SAC also reduced cell survival in response to spindle perturbation insufficient for triggering mitotic slippage, of which mitotic exit was characterized by displaced chromosomes during metaphase. In either mitotic slippage or mitotic exit with missegregated chromosomes, cell death occurred only after one cell cycle following mitotic exit and increased progressively during subsequent cell cycles. Consistent with these results, transient inhibition of the SAC using an MPS1 inhibitor acted synergistically with spindle perturbation in inducing chromosome missegregation and cytotoxicity. The specific temporal patterns of cell death after mitotic exit with weakened SAC may reconcile the contradictory results from many previous studies.
Project description:Accurate chromosome segregation during cell division requires amphitelic chromosome attachment to the spindle apparatus. It is ensured by the combined activity of the spindle assembly checkpoint (SAC),1 a signaling mechanism that delays anaphase onset in response to unattached chromosomes, and an error correction mechanism that eliminates syntelic attachments.2 The SAC becomes active when Mps1 kinase sequentially phosphorylates the kinetochore protein Spc105/KNL1 and the signaling proteins that Spc105/KNL1 recruits to facilitate the production of the mitotic checkpoint complex (MCC).3-8 The error correction mechanism is regulated by the Aurora B kinase, but Aurora B also promotes SAC signaling via indirect mechanisms.9-12 Here we present evidence that Aurora B kinase activity directly promotes MCC production by working downstream of Mps1 in budding yeast and human cells. Using the ectopic SAC activation (eSAC) system, we find that the conditional dimerization of Aurora B in budding yeast and an Aurora B recruitment domain in HeLa cells with either Bub1 or Mad1, but not the phosphodomain of Spc105/KNL1, leads to ectopic MCC production and mitotic arrest.13-16 Importantly, Bub1 must recruit both Mad1 and Cdc20 for this ectopic signaling activity. These and other data show that Aurora B cooperates with Bub1 to promote MCC production, but only after Mps1 licenses Bub1 recruitment to the kinetochore. This direct involvement of Aurora B in SAC signaling may maintain SAC signaling even after Mps1 activity in the kinetochore is lowered.
Project description:Regulation of macromolecular interactions by phosphorylation is crucial in signaling networks. In the spindle assembly checkpoint (SAC), which enables errorless chromosome segregation, phosphorylation promotes recruitment of SAC proteins to tensionless kinetochores. The SAC kinase Mps1 phosphorylates multiple Met-Glu-Leu-Thr (MELT) motifs on the kinetochore subunit Spc105/Knl1. The phosphorylated MELT motifs (MELT(P)) then promote recruitment of downstream signaling components. How MELT(P) motifs are recognized is unclear. In this study, we report that Bub3, a 7-bladed ?-propeller, is the MELT(P) reader. It contains an exceptionally well-conserved interface that docks the MELT(P) sequence on the side of the ?-propeller in a previously unknown binding mode. Mutations targeting the Bub3 interface prevent kinetochore recruitment of the SAC kinase Bub1. Crucially, they also cause a checkpoint defect, showing that recognition of phosphorylated targets by Bub3 is required for checkpoint signaling. Our data provide the first detailed mechanistic insight into how phosphorylation promotes recruitment of checkpoint proteins to kinetochores. DOI:http://dx.doi.org/10.7554/eLife.01030.001.
Project description:During mitosis, unattached kinetochores in a dividing cell signal to the spindle assembly checkpoint (SAC) to delay anaphase onset and prevent chromosome missegregation.1,2,3,4 The signaling activity of these kinetochores and the likelihood of chromosome missegregation depend on the amount of SAC signaling proteins each kinetochore recruits.5,6,7,8 Therefore, factors that control SAC protein recruitment must be thoroughly understood. Phosphoregulation of kinetochore and SAC signaling proteins due to the concerted action of many kinases and phosphatases is a significant determinant of the SAC protein recruitment to signaling kinetochores.9 Whether the abundance of SAC proteins also influences the recruitment and signaling activity of human kinetochores has not been studied.8,10 Here, we reveal that the low cellular abundance of the SAC signaling protein Bub1 limits its own recruitment and that of BubR1 and restricts the SAC signaling activity of the kinetochore. Conversely, Bub1 overexpression results in higher recruitment of SAC proteins, producing longer delays in anaphase onset. We also find that the number of SAC proteins recruited by a signaling kinetochore is inversely correlated with the total number of signaling kinetochores in the cell. This correlation likely arises from the competition among the signaling kinetochores to recruit from a limited pool of signaling proteins, including Bub1. The inverse correlation may allow the dividing cell to prevent a large number of signaling kinetochores in early prophase from generating an overly large signal while enabling the last unaligned kinetochore in late prometaphase to signal at the maximum strength.
Project description:During mitosis, unattached kinetochores in a dividing cell activate the spindle assembly checkpoint (SAC) and delay anaphase onset by generating the anaphase-inhibitory mitotic checkpoint complex (MCC). These kinetochores generate the MCC by recruiting its constituent proteins, including BubR1. In principle, BubR1 recruitment to signaling kinetochores should increase its local concentration and promote MCC formation. However, in human cells BubR1 is mainly thought to sensitize the SAC to silencing. Whether BubR1 localization to signaling kinetochores by itself enhances SAC signaling remains unknown. Therefore, we used ectopic SAC activation (eSAC) systems to isolate two molecules that recruit BubR1 to the kinetochore, the checkpoint protein Bub1 and the KI and MELT motifs in the kinetochore protein KNL1, and observed their contribution to eSAC signaling. Our quantitative analyses and mathematical modeling show that Bub1-mediated BubR1 recruitment to the human kinetochore promotes SAC signaling and highlight BubR1's dual role of strengthening the SAC directly and silencing it indirectly.