Project description:Pharmacological focal adhesion kinase (FAK) inhibition prevents tumor growth and metastasis, via actions on both tumor and stromal cells. In this paper, we show that vascular endothelial cadherin (VEC) tyrosine (Y) 658 is a target of FAK in tumor-associated endothelial cells (ECs). Conditional kinase-dead FAK knockin within ECs inhibited recombinant vascular endothelial growth factor (VEGF-A) and tumor-induced VEC-Y658 phosphorylation in vivo. Adherence of VEGF-expressing tumor cells to ECs triggered FAK-dependent VEC-Y658 phosphorylation. Both FAK inhibition and VEC-Y658F mutation within ECs prevented VEGF-initiated paracellular permeability and tumor cell transmigration across EC barriers. In mice, EC FAK inhibition prevented VEGF-dependent tumor cell extravasation and melanoma dermal to lung metastasis without affecting primary tumor growth. As pharmacological c-Src or FAK inhibition prevents VEGF-stimulated c-Src and FAK translocation to EC adherens junctions, but FAK inhibition does not alter c-Src activation, our experiments identify EC FAK as a key intermediate between c-Src and the regulation of EC barrier function controlling tumor metastasis.
Project description:Damage to the microvascular endothelium is an important part of normal tissue injury after radiation exposure and driven by the production of pro-oxidants. The Ca2+/calmodulin-dependent protein kinase II is present in the mitochondrial matrix (mitoCaMKII) where it regulates Ca2+ uptake via the mitochondrial Ca2+ uniporter (MCU) and pro-oxidant production. Here, we demonstrate that radiation exposure disrupts endothelial cell barrier integrity in vitro, but can be abrogated by inhibition of mitoCaMKII, MCU, or opening of the mitochondrial transition pore. Scavenging of mitochondrial pro-oxidants with mitoTEMPO before, but not after irradiation, protected barrier function. Furthermore, markers of apoptosis and mitochondrial pro-oxidant production were elevated at 24 h following irradiation and abolished by mitoCaMKII inhibition. Endothelial barrier dysfunction was detected as early as 2 h after irradiation. Despite only mildly impaired mitochondrial respiration, the intracellular ATP levels were significantly reduced 4 h after irradiation and correlated with barrier function. MitoCaMKII inhibition improved intracellular ATP concentrations by increasing glycolysis. Finally, DNA double strand break repair and non-homologous end joining, two major drivers of ATP consumption after irradiation, were greatly increased but not significantly affected by mitoCaMKII inhibition. These findings support the hypothesis that mitoCaMKII activity is linked to mitochondrial pro-oxidant production, reduced ATP production, and loss of endothelial barrier function following irradiation. The inhibition of mitoCaMKII is a promising approach to limiting radiation-induced endothelial injury.
Project description:Entry of tumor cells into the blood stream is a critical step in cancer metastasis. Although significant progress has been made in visualizing tumor cell motility in vivo, the underlying mechanism of cancer cell intravasation remains largely unknown. We developed a microfluidic-based assay to recreate the tumor-vascular interface in three-dimensions, allowing for high resolution, real-time imaging, and precise quantification of endothelial barrier function. Studies are aimed at testing the hypothesis that carcinoma cell intravasation is regulated by biochemical factors from the interacting cells and cellular interactions with macrophages. We developed a method to measure spatially resolved endothelial permeability and show that signaling with macrophages via secretion of tumor necrosis factor alpha results in endothelial barrier impairment. Under these conditions intravasation rates were increased as validated with live imaging. To further investigate tumor-endothelial (TC-EC) signaling, we used highly invasive fibrosarcoma cells and quantified tumor cell migration dynamics and TC-EC interactions under control and perturbed (with tumor necrosis factor alpha) barrier conditions. We found that endothelial barrier impairment was associated with a higher number and faster dynamics of TC-EC interactions, in agreement with our carcinoma intravasation results. Taken together our results provide evidence that the endothelium poses a barrier to tumor cell intravasation that can be regulated by factors present in the tumor microenvironment.
Project description:Endogenously produced nitric oxide synthase inhibitor, asymmetric methylarginine (ADMA) is associated with vascular dysfunction and endothelial leakage. We studied the role of ADMA, and the enzymes metabolizing it, dimethylarginine dimethylaminohydrolases (DDAH) in the regulation of endothelial barrier function in pulmonary macrovascular and microvascular cells in vitro and in lungs of genetically modified heterozygous DDAHI knockout mice in vivo. We show that ADMA increases pulmonary endothelial permeability in vitro and in in vivo and that this effect is mediated by nitric oxide (NO) acting via protein kinase G (PKG) and independent of reactive oxygen species formation. ADMA-induced remodeling of actin cytoskeleton and intercellular adherens junctions results from a decrease in PKG-mediated phosphorylation of vasodilator-stimulated phosphoprotein (VASP) and a subsequent down-regulation of Rac1 activity. The effects of ADMA on endothelial permeability, Rac1 activation and VASP phosphorylation are prevented by overexpression of active DDAHI and DDAHII, whereas inactive DDAH mutants have no effect. These findings demonstrate for the first time that ADMA metabolism critically determines pulmonary endothelial barrier function by modulating Rac1-mediated remodeling of the actin cytoskeleton and intercellular junctions.
Project description:Increased vascular permeability is a hallmark of several cardiovascular anomalies, including ischaemia/reperfusion injury and inflammation. During both ischaemia/reperfusion and inflammation, massive amounts of various nucleotides, particularly adenosine 5'-triphosphate (ATP) and adenosine, are released that can induce a plethora of signalling pathways via activation of several purinergic receptors and may affect endothelial barrier properties. The nature of the effects on endothelial barrier function may depend on the prevalence and type of purinergic receptors activated in a particular tissue. In this review, we discuss the influence of the activation of various purinergic receptors and downstream signalling pathways on vascular permeability during pathological conditions.
Project description:Acute lung injury (ALI) is an acute inflammatory process arises from a wide range of lung insults. A major cause of ALI is dysfunction of the pulmonary vascular endothelial barrier but the mechanisms involved are incompletely understood. The therapeutic potential of histone deacetylase (HDAC) inhibitors for the treatment of cardiovascular and inflammatory diseases is increasingly apparent, but the mechanisms by which HDACs regulate pulmonary vascular barrier function remain to be resolved. We found that specific Class IIa HDACs inhibitor, TMP269, significantly attenuated the lipopolysaccharide (LPS)-induced human lung microvascular endothelial cells (HLMVEC) barrier compromise in vitro and improved vascular barrier integrity and lung function in murine model of ALI in vivo. TMP269 decreased LPS-induced myosin light chain phosphorylation suggesting the role for Class IIa HDACs in LPS-induced cytoskeleton reorganization. TMP269 did not affect microtubule structure and tubulin acetylation in contrast to the HDAC6-specific inhibitor, Tubastatin A suggesting that Class IIa HDACs and HDAC6 (Class IIb) regulate endothelial cytoskeleton and permeability via different mechanisms. Furthermore, LPS increased the expression of ArgBP2 which has recently been attributed to HDAC-mediated activation of Rho. Depletion of ArgBP2 abolished the ability of LPS to disrupt barrier function in HLMVEC and both TMP269 and Tubastatin A decreased the level of ArgBP2 expression after LPS stimulation suggesting that both Class IIa and IIb HDACs regulate endothelial permeability via ArgBP2-dependent mechanism. Collectively, our data strongly suggest that Class IIa HDACs are involved in LPS-induced ALI in vitro and in vivo via specific mechanism which involved contractile responses, but not microtubule reorganization.
Project description:Growth Hormone-Releasing Hormone (GHRH) regulates the release of growth hormone from the anterior pituitary gland. GHRH also acts as a growth and inflammatory factor in a variety of experimental models in oncology. In the current study, we used bovine pulmonary arterial cells in order to investigate the effects of GHRH and its antagonistic and agonistic analogs in key intracellular pathways that regulate endothelial permeability. GHRH antagonists suppressed the activation of MLC2, ERK1/2, JAK2/STAT3 pathway and increased the intracellular P53 and pAMPK levels. In contrast, both GHRH and GHRH agonist MR409 exerted the opposite effects. Furthermore, GHRH antagonists supported the integrity of endothelial barrier, while GHRH and GHRH agonists had the contrary effects, as reflected in measurements of transendothelial resistance. Our observations support the evidence for the anti - inflammatory role of GHRH antagonists in the vasculature. Moreover, our results suggest that GHRH antagonists should be considered as promising therapeutic agents for treating severe respiratory abnormalities, such as the lethal Acute Respiratory Distress Syndrome (ARDS).
Project description:In normal physiology, endothelial cells (ECs) form a vital barrier between the blood and underlying tissue controlling leukocyte diapedesis and vascular inflammation. Emerging data suggest that neuronal guidance cues, typically expressed during development, have roles outside the nervous system in vascular biology and immune responses. In particular, Class III semaphorins have been reported to affect EC migration and angiogenesis. While ECs express high levels of semaphorin 3F (SEMA3F), little is known about its function in mature ECs. Here we show that SEMA3F expression is reduced by inflammatory stimuli and increased by laminar flow. Endothelial cells exposed to laminar flow secrete SEMA3F, which subsequently binds to heparan sulfates on the surface of ECs. However, under pro-inflammatory conditions, reduced levels of SEMA3F make ECs more prone to monocyte diapedesis and display impaired barrier function as measured with an electric cell-substrate impedance sensing system and a microfluidic system. In addition, we demonstrate that SEMA3F can directly inhibit the migration of activated monocytes. Taken together, our data suggest an important homeostatic function for EC-expressed SEMA3F, serving as a mediator of endothelial quiescence.
Project description:ObjectiveVascular endothelial (VE)-cadherin is the predominant component of endothelial adherens junctions essential for cell-cell adhesion and formation of the vascular barrier. Endocytic recycling is an important mechanism for maintaining the expression of cell surface membrane proteins. However, little is known about the molecular mechanism of VE-cadherin recycling and its role in maintenance of vascular integrity.Approach and resultsUsing calcium-switch assay, confocal imaging, cell surface biotinylation, and flow cytometry, we showed that VE-cadherin recycling required Ras-related proteins in brain (Rab)11a and Rab11 family-interacting protein 2. Yeast 2-hybrid assay and coimmunoprecipitation demonstrated that direct interaction of VE-cadherin with family-interacting protein 2 (at aa 453-484) formed a ternary complex with Rab11a in human endothelial cells. Silencing of Rab11a or Rab11 family-interacting protein 2 in endothelial cells prevented VE-cadherin recycling and VE-cadherin expression at endothelial plasma membrane. Furthermore, inactivation of Rab11a signaling blocked junctional reannealing after vascular inflammation. Selective knockdown of Rab11a in pulmonary microvessels markedly increased vascular leakage in mice challenged with lipopolysaccharide or polymicrobial sepsis.ConclusionsRab11a/Rab11 family-interacting protein 2-mediated VE-cadherin recycling is required for formation of adherens junctions and restoration of VE barrier integrity and hence a potential target for clinical intervention in inflammatory disease.
Project description:Recently we observed that endothelial cells cultured in tightly confluent monolayers display frequent local lamellipodia, and that thrombin, an agent that increases endothelial permeability, reduces lamellipodia protrusions. This led us to test the hypothesis that local lamellipodia contribute to endothelial barrier function. Movements of subcellular structures containing GFP-actin or VE-cadherin-GFP expressed in endothelial cells were recorded using time-lapse microscopy. Transendothelial electrical resistance (TER) served as an index of endothelial barrier function. Changes in both lamellipodia dynamics and TER were assessed during baseline and after cells were treated with either the barrier-disrupting agent thrombin, or the barrier-stabilizing agent sphingosine-1-phosphate (S1P). The myosin II inhibitor blebbistatin was used to selectively block lamellipodia formation, and was used to test their role in the barrier function of endothelial cell monolayers and isolated, perfused rat mesenteric venules. Myosin light chain (MLC) phosphorylation was assessed by immunofluorescence microscopy. Rac1 and RhoA activation were evaluated using G-LISA assays. The role of Rac1 was tested with the specific inhibitor NSC23766 or by expressing wild-type or dominant negative GFP-Rac1. The results show that thrombin rapidly decreased both TER and the lamellipodia protrusion frequency. S1P rapidly increased TER in association with increased protrusion frequency. Blebbistatin nearly abolished local lamellipodia protrusions while cortical actin fibers and stress fibers remained intact. Blebbistatin also significantly decreased TER of cultured endothelial cells and increased permeability of isolated rat mesenteric venules. Both thrombin and S1P increased MLC phosphorylation and activation of RhoA. However, thrombin and S1P had differential impacts on Rac1, correlating with the changes in TER and lamellipodia protrusion frequency. Overexpression of Rac1 elevated, while NSC23766 and dominant negative Rac1 reduced barrier function and lamellipodia activity. Combined, these data suggest that local lamellipodia, driven by myosin II and Rac1, are important for dynamic changes in endothelial barrier integrity.