Project description:<p>The goal of this proposal is to bring together the power of 1) whole exome sequencing, 2) homozygosity mapping in consanguineous families, 3) genome-wide maps of neuronal transcription in response to neuronal activity, and 4) genome-wide maps of the binding sites of factors that regulate this transcription to generate and annotate a catalog of ASD-associated variants. The consanguineous families are already enrolled in research, and have been phenotyped. The neuronal transcription and binding site maps will be developed by the Greenberg Lab at Harvard Medical School. The whole exome sequencing will be done at the Broad Institute, and the Walsh lab at Children's Hospital will validate the results and analyze the variant data.</p>
Project description:Inhibition of Brd4 with Jq1 in neurons with or without BDNF stimulation Examination of the effects of Jq1 treatment on primary mouse cortical neurons
Project description:Protein coding gene expression requires two steps – transcription and translation – which can be regulated independently to allow nuanced, localized, and rapid responses to cellular stimuli. Neurons are known to respond transcriptionally and translationally to bursts of brain activity, and a transcriptional response to this activation has also been recently characterized in astrocytes. However, the extent to which astrocytes respond translationally is unknown. We tested the hypothesis that astrocytes also have a programmed translational response by characterizing the change in transcript ribosome occupancy in astrocytes using Translating Ribosome Affinity Purification subsequent to a robust induction of neuronal activity in vivo via acute seizure. We identified a reproducible change in transcripts on astrocyte ribosomes, highlighted by a rapid decrease in housekeeping transcripts, such as ribosomal and mitochondrial components, and a rapid increase in transcripts related to cytoskeleton, motor activity, ion transport, and cell communication. This indicates a dynamic response, some of which might be secondary to activation of Receptor Tyrosine Kinase signaling. Using acute slices, we quantified the extent to which individual cues and sequela of neuronal activity can activate translation acutely in astrocytes. This identified both BDNF and KCl as contributors to translation induction, the latter with both action-potential sensitive and insensitive components. Finally, we show that this translational response requires the presence of neurons, indicating the response is acutely or chronically non-cell autonomous. Regulation of translation in astrocytes by neuronal activity suggests an additional mechanism by which astrocytes may dynamically modulate nervous system functioning.
Project description:Maintaining an appropriate balance between excitation and inhibition is critical for information processing in cortical neurons. It is known that cortical neurons receive widely disparate levels of excitation. To ensure efficient coding, they are capable of cell-autonomously adjusting the inhibition they receive to the individual levels of excitatory input, but the underlying mechanisms are not understood.
The article associated with this data shows that Ste20-like kinase (SLK) in cortical neurons mediates cell-autonomous regulation of excitation-inhibition balance in the thalamocortical feed-forward circuit, but not in the feed-back circuit. The parallel reaction monitoring data here supports the link between activity, SLK phosphorylation and function.
Project description:Pten, a gene associated with autism spectrum disorder, is an upstream regulator of receptor tyrosine kinase intracellular signaling pathways that mediate extracellular cues to inform cellular development and activity-dependent plasticity. We therefore hypothesized that Pten loss would interfere with activity dependent dendritic growth. We investigated the effects of this interaction on the maturation of retrovirally labeled postnatally generated wild-type and Pten knockout granule neurons in male and female mouse dentate gyrus while using chemogenetics to manipulate the activity of the perforant path afferents. We find that enhancing network activity accelerates the dendritic outgrowth of wild-type, but not Pten knockout, neurons. This was specific to immature neurons during an early developmental window. We also examined synaptic connectivity and physiological measures of neuron maturation. The input resistance, membrane capacitance, dendritic spine morphology, and frequency of spontaneous synaptic events were not differentially altered by activity in wild-type versus Pten knockout neurons. Therefore, Pten and its downstream signaling pathways regulate the activity-dependent sculpting of the dendritic arbor during neuronal maturation.
Project description:Catecholamine signaling is thought to modulate cognition in an inverted-U relationship, but the mechanisms are unclear. We measured norepinephrine and dopamine release, postsynaptic calcium responses, and interactions between tonic and phasic firing modes under various stimuli and conditions. High tonic activity in vivo depleted catecholamine stores, desensitized postsynaptic responses, and decreased phasic transmission. Together this provides a clearer understanding of the inverted-U relationship, offering insights into psychiatric disorders and neurodegenerative diseases with impaired catecholamine signaling.
Project description:BackgroundCyanobacteria account for 20-30% of Earth's primary photosynthetic productivity and convert solar energy into biomass-stored chemical energy at the rate of approximately 450 TW [1]. These single-cell microorganisms are resilient predecessors of all higher oxygenic phototrophs and can be found in self-sustaining, nitrogen-fixing communities the world over, from Antarctic glaciers to the Sahara desert [2].Methodology/principal findingsHere we show that diverse genera of cyanobacteria including biofilm-forming and pelagic strains have a conserved light-dependent electrogenic activity, i.e. the ability to transfer electrons to their surroundings in response to illumination. Naturally-growing biofilm-forming photosynthetic consortia also displayed light-dependent electrogenic activity, demonstrating that this phenomenon is not limited to individual cultures. Treatment with site-specific inhibitors revealed the electrons originate at the photosynthetic electron transfer chain (P-ETC). Moreover, electrogenic activity was observed upon illumination only with blue or red but not green light confirming that P-ETC is the source of electrons. The yield of electrons harvested by extracellular electron acceptor to photons available for photosynthesis ranged from 0.05% to 0.3%, although the efficiency of electron harvesting likely varies depending on terminal electron acceptor.Conclusions/significanceThe current study illustrates that cyanobacterial electrogenic activity is an important microbiological conduit of solar energy into the biosphere. The mechanism responsible for electrogenic activity in cyanobacteria appears to be fundamentally different from the one exploited in previously discovered electrogenic bacteria, such as Geobacter, where electrons are derived from oxidation of organic compounds and transported via a respiratory electron transfer chain (R-ETC) [3], [4]. The electrogenic pathway of cyanobacteria might be exploited to develop light-sensitive devices or future technologies that convert solar energy into limited amounts of electricity in a self-sustainable, CO(2)-free manner.