Ontology highlight
ABSTRACT:
SUBMITTER: Divyang Deep Tiwari
PROVIDER: BIOMD0000001066 | BioModels | 2023-05-09
REPOSITORIES: BioModels
Items per page: 5 1 - 5 of 7 |
Chowell Diego D Yoo Seong-Keun SK Valero Cristina C Pastore Alessandro A Krishna Chirag C Lee Mark M Hoen Douglas D Shi Hongyu H Kelly Daniel W DW Patel Neal N Makarov Vladimir V Ma Xiaoxiao X Vuong Lynda L Sabio Erich Y EY Weiss Kate K Kuo Fengshen F Lenz Tobias L TL Samstein Robert M RM Riaz Nadeem N Adusumilli Prasad S PS Balachandran Vinod P VP Plitas George G Ari Hakimi A A Abdel-Wahab Omar O Shoushtari Alexander N AN Postow Michael A MA Motzer Robert J RJ Ladanyi Marc M Zehir Ahmet A Berger Michael F MF Gönen Mithat M Morris Luc G T LGT Weinhold Nils N Chan Timothy A TA
Nature biotechnology 20211101 4
Only a fraction of patients with cancer respond to immune checkpoint blockade (ICB) treatment, but current decision-making procedures have limited accuracy. In this study, we developed a machine learning model to predict ICB response by integrating genomic, molecular, demographic and clinical data from a comprehensively curated cohort (MSK-IMPACT) with 1,479 patients treated with ICB across 16 different cancer types. In a retrospective analysis, the model achieved high sensitivity and specificit ...[more]