Project description:Computational modelling has become increasingly common in life science research. To provide a platform to support universal sharing, easy accessibility and model reproducibility, BioModels (https://www.ebi.ac.uk/biomodels/), a repository for mathematical models, was established in 2005. The current BioModels platform allows submission of models encoded in diverse modelling formats, including SBML, CellML, PharmML, COMBINE archive, MATLAB, Mathematica, R, Python or C++. The models submitted to BioModels are curated to verify the computational representation of the biological process and the reproducibility of the simulation results in the reference publication. The curation also involves encoding models in standard formats and annotation with controlled vocabularies following MIRIAM (minimal information required in the annotation of biochemical models) guidelines. BioModels now accepts large-scale submission of auto-generated computational models. With gradual growth in content over 15 years, BioModels currently hosts about 2000 models from the published literature. With about 800 curated models, BioModels has become the world's largest repository of curated models and emerged as the third most used data resource after PubMed and Google Scholar among the scientists who use modelling in their research. Thus, BioModels benefits modellers by providing access to reliable and semantically enriched curated models in standard formats that are easy to share, reproduce and reuse.
Project description:MOTIVATION:One of the major bottlenecks in building systems biology models is identification and estimation of model parameters for model calibration. Searching for model parameters from published literature and models is an essential, yet laborious task. RESULTS:We have developed a new service, BioModels Parameters, to facilitate search and retrieval of parameter values from the Systems Biology Markup Language models stored in BioModels. Modellers can now directly search for a model entity (e.g. a protein or drug) to retrieve the rate equations describing it; the associated parameter values (e.g. degradation rate, production rate, Kcat, Michaelis-Menten constant, etc.) and the initial concentrations. Currently, BioModels Parameters contains entries from over 84,000 reactions and 60 different taxa with cross-references. The retrieved rate equations and parameters can be used for scanning parameter ranges, model fitting and model extension. Thus, BioModels Parameters will be a valuable service for systems biology modellers. AVAILABILITY AND IMPLEMENTATION:The data are accessible via web interface and API. BioModels Parameters is free to use and is publicly available at https://www.ebi.ac.uk/biomodels/parameterSearch. SUPPLEMENTARY INFORMATION:Supplementary data are available at Bioinformatics online.
Project description:AIMS/HYPOTHESIS:Previous metabolomics studies suggest that type 1 diabetes is preceded by specific metabolic disturbances. The aim of this study was to investigate whether distinct metabolic patterns occur in peripheral blood mononuclear cells (PBMCs) of children who later develop pancreatic beta cell autoimmunity or overt type 1 diabetes. METHODS:In a longitudinal cohort setting, PBMC metabolomic analysis was applied in children who (1) progressed to type 1 diabetes (PT1D, n?=?34), (2) seroconverted to ?1 islet autoantibody without progressing to type 1 diabetes (P1Ab, n?=?27) or (3) remained autoantibody negative during follow-up (CTRL, n?=?10). RESULTS:During the first year of life, levels of most lipids and polar metabolites were lower in the PT1D and P1Ab groups compared with the CTRL group. Pathway over-representation analysis suggested alanine, aspartate, glutamate, glycerophospholipid and sphingolipid metabolism were over-represented in PT1D. Genome-scale metabolic models of PBMCs during type 1 diabetes progression were developed by using publicly available transcriptomics data and constrained with metabolomics data from our study. Metabolic modelling confirmed altered ceramide pathways, known to play an important role in immune regulation, as specifically associated with type 1 diabetes progression. CONCLUSIONS/INTERPRETATION:Our data suggest that systemic dysregulation of lipid metabolism, as observed in plasma, may impact the metabolism and function of immune cells during progression to overt type 1 diabetes. DATA AVAILABILITY:The GEMs for PBMCs have been submitted to BioModels (www.ebi.ac.uk/biomodels/), under accession number MODEL1905270001. The metabolomics datasets and the clinical metadata generated in this study were submitted to MetaboLights (https://www.ebi.ac.uk/metabolights/), under accession number MTBLS1015.
Project description:Existing models of insulin signalling focus on short term dynamics, rather than the longer term dynamics necessary to understand many physiologically relevant behaviours. We have developed a model of insulin signalling in rodent adipocytes that includes both transcriptional feedback through the Forkhead box type O (FOXO) transcription factor, and interaction with oxidative stress, in addition to the core pathway. In the model Reactive Oxygen Species are both generated endogenously and can be applied externally. They regulate signalling though inhibition of phosphatases and induction of the activity of Stress Activated Protein Kinases, which themselves modulate feedbacks to insulin signalling and FOXO.Insulin and oxidative stress combined produce a lower degree of activation of insulin signalling than insulin alone. Fasting (nutrient withdrawal) and weak oxidative stress upregulate antioxidant defences while stronger oxidative stress leads to a short term activation of insulin signalling but if prolonged can have other effects including degradation of the insulin receptor substrate (IRS1) and FOXO. At high insulin the protective effect of moderate oxidative stress may disappear.Our model is consistent with a wide range of experimental data, some of which is difficult to explain. Oxidative stress can have effects that are both up- and down-regulatory on insulin signalling. Our model therefore shows the complexity of the interaction between the two pathways and highlights the need for such integrated computational models to give insight into the dysregulation of insulin signalling along with more data at the individual level.A complete SBML model file can be downloaded from BIOMODELS (https://www.ebi.ac.uk/biomodels-main) with unique identifier MODEL1212210000.Other files and scripts are available as additional files with this journal article and can be downloaded from https://github.com/graham1034/Smith2012_insulin_signalling.
Project description:Quantitative models of biochemical and cellular systems are used to answer a variety of questions in the biological sciences. The number of published quantitative models is growing steadily thanks to increasing interest in the use of models as well as the development of improved software systems and the availability of better, cheaper computer hardware. To maximise the benefits of this growing body of models, the field needs centralised model repositories that will encourage, facilitate and promote model dissemination and reuse. Ideally, the models stored in these repositories should be extensively tested and encoded in community-supported and standardised formats. In addition, the models and their components should be cross-referenced with other resources in order to allow their unambiguous identification.BioModels Database http://www.ebi.ac.uk/biomodels/ is aimed at addressing exactly these needs. It is a freely-accessible online resource for storing, viewing, retrieving, and analysing published, peer-reviewed quantitative models of biochemical and cellular systems. The structure and behaviour of each simulation model distributed by BioModels Database are thoroughly checked; in addition, model elements are annotated with terms from controlled vocabularies as well as linked to relevant data resources. Models can be examined online or downloaded in various formats. Reaction network diagrams generated from the models are also available in several formats. BioModels Database also provides features such as online simulation and the extraction of components from large scale models into smaller submodels. Finally, the system provides a range of web services that external software systems can use to access up-to-date data from the database.BioModels Database has become a recognised reference resource for systems biology. It is being used by the community in a variety of ways; for example, it is used to benchmark different simulation systems, and to study the clustering of models based upon their annotations. Model deposition to the database today is advised by several publishers of scientific journals. The models in BioModels Database are freely distributed and reusable; the underlying software infrastructure is also available from SourceForge https://sourceforge.net/projects/biomodels/ under the GNU General Public License.
Project description:BioModels is a reference repository hosting mathematical models that describe the dynamic interactions of biological components at various scales. The resource provides access to over 1,200 models described in literature and over 140,000 models automatically generated from pathway resources. Most model components are cross-linked with external resources to facilitate interoperability. A large proportion of models are manually curated to ensure reproducibility of simulation results. This tutorial presents BioModels' content, features, functionality, and usage.
Project description:BioModels Database (http://www.ebi.ac.uk/biomodels/), part of the international initiative BioModels.net, provides access to published, peer-reviewed, quantitative models of biochemical and cellular systems. Each model is carefully curated to verify that it corresponds to the reference publication and gives the proper numerical results. Curators also annotate the components of the models with terms from controlled vocabularies and links to other relevant data resources. This allows the users to search accurately for the models they need. The models can currently be retrieved in the SBML format, and import/export facilities are being developed to extend the spectrum of formats supported by the resource.
Project description:Models mimicking the realistic geometries and mechanical properties of human tissue are requiring ever-better materials. Biomodels made of poly (vinyl alcohol) are particularly in demand, as they can be used to realistically reproduce the characteristics of blood vessels. The reproducibility of biomodels can be altered due to dehydration that is observed after long periods of usage. In order to improve their usability, one should consider the method used to reproduce them; however, few studies have reported a method reproduce biomodels. This study proposes a novel reproduction method for biomodels that allows them to quickly and easily reproduce their geometric and mechanical properties. Specimens of the dried biomodels were reformed through immersion in temperature-controlled water. Our results show that water at 35?°C can be effective to reproduce both the geometric and mechanical properties of the specimens. X-ray diffraction (XRD) measurements revealed that water immersion can reform the crystal structure of the pre-dried specimens, and images obtained using micro-computed tomography acquisition show that the geometry of the specimens can be reformed by water immersion without introducing any defects. These results indicate that the proposed method can lead to high reproducibility of both the original geometric and mechanical properties of the dried biomodels.
Project description:BACKGROUND: Parkinson's disease is an age-related disease whose pathogenesis is not completely known. Animal models exist for investigating the disease but not all results can be easily transferred to humans. Therefore, mathematical or probabilistic models for the human disease are to be constructed in silico in order to predict specific processes within a cell, such as the dopamine metabolism and transport processes in a neuron. RESULTS: We present a Systems Biology Markup Language (SBML) model of a whole dopaminergic nerve cell consisting of 139 reactions and 111 metabolites which includes, among others, the dopamine metabolism and transport, oxidative stress, aggregation of ?-synuclein (?SYN), lysosomal and proteasomal degradation, and mitophagy. The predictive power of the model was investigated using flux balance analysis for the identification of steady model states. To this end, we performed six experiments: (i) investigation of the normal cell behavior, (ii) increase of O2, (iii) increase of ATP, (iv) influence of neurotoxins, (v) increase of ?SYN in the cell, and (vi) increase of dopamine synthesis. The SBML model is available in the BioModels database with identifier MODEL1302200000. CONCLUSION: It is possible to simulate the normal behavior of an in vivo nerve cell with the developed model. We show that the model is sensitive for neurotoxins and oxidative stress. Further, an increased level of ?SYN induces apoptosis and an increased flux of ?SYN to the extracellular space was observed.
Project description:BioModels Database is a reference repository of mathematical models used in biology. Models are stored as SBML files on a file system and metadata is provided in a relational database. Models can be retrieved through a web interface and programmatically via web services. In addition to those more traditional ways to access information, Linked Data using Semantic Web technologies (such as the Resource Description Framework, RDF), is becoming an increasingly popular means to describe and expose biological relevant data.We present the BioModels Linked Dataset, which exposes the models’ content as a dereferencable interlinked dataset. BioModels Linked Dataset makes use of the wealth of annotations available within a large number of manually curated models to link and integrate data and models from other resources.The BioModels Linked Dataset provides users with a dataset interoperable with other semantic web resources. It supports powerful search queries, some of which were not previously available to users and allow integration of data from multiple resources. This provides a distributed platform to find similar models for comparison, processing and enrichment.