Microarray assay of the genetic response of Picea abies to Heterobasidion annosum infection (Loops 1 and 2)
Ontology highlight
ABSTRACT: This SuperSeries is composed of the following subset Series: GSE10058: Microarray assay of the genetic response of Picea abies to Heterobasidion annosum infection - Loop1 GSE10059: Microarray assay of the genetic response of Picea abies to Heterobasidion annosum infection - Loop2 The hypothesis of the experiment is that infected trees of high resistance express a wider variety of resistance genes than infected trees of low resistance, and that the level of expression of these resistance genes differs between infected and healthy branches. Also, some genes highly expressed in the infected state not expressed in the healthy state may be in response to the wounding rather than the actual infection. By comparing these expressions to that of wounded, uninfected branches, this could also be clarified. Refer to individual Series
Project description:The hypothesis of the experiment is that infected trees of high resistance express a wider variety of resistance genes than infected trees of low resistance, and that the level of expression of these resistance genes differs between infected and healthy branches. Also, some genes highly expressed in the infected state not expressed in the healthy state may be in response to the wounding rather than the actual infection. By comparing these expressions to that of wounded, uninfected branches, this could also be clarified. Three different Picea abies clones, of increasing resistance to fungal attack, have been infected. For all clones, three rametes have been infected with Heterobasidion of 1 month, by means of cutting the cambium and inoculating a piece of fungus growing in agar in the wound. For the low and medium resistant clone, a fourth ramete has been cut and inoculated with agar not containing any fungal material.
Project description:The hypothesis of the experiment is that infected trees of high resistance express a wider variety of resistance genes than infected trees of low resistance, and that the level of expression of these resistance genes differs between infected and healthy branches. Also, some genes highly expressed in the infected state not expressed in the healthy state may be in response to the wounding rather than the actual infection. By comparing these expressions to that of wounded, uninfected branches, this could also be clarified. Three different Picea abies clones, of increasing resistance to fungal attack, have been infected. For all clones, three rametes have been infected with Heterobasidion of 1 month, by means of cutting the cambium and inoculating a piece of fungus growing in agar in the wound. For the low and medium resistant clone, a fourth ramete has been cut and inoculated with agar not containing any fungal material.
Project description:We compared the diurnal gene expression across nine clades of Archaeplastida. The organisms were subjected to either 12 hours light / 12 hours darkness (12L/12D) or 16L/8D. The samples were taken every two hours in triplicates.
Project description:Analysis of the subunits composition of the thylakoids protein complexes in Picea abies (Norway spruce) by means of two-dimensional large-pore Blue-Native/sodium dodecyl sulfate-polyacrylamide gel electrophoresis (2D lpBN/SDS-PAGE) and in-gel tryptic digestion of single spots.
Project description:Transcript profiles of Heterobasion irregulare from different tissues and mycelium grown on different substrates were analyzed. The array probes were designed from gene models taken from the Joint Genome Institute (JGI, department of energy) Heterobasidion annosum genome sequence version 1. One aim of this study was to verify the expression of the automatically annotated gene models under various conditions. Another goal was to compare gene expression profiles from different tissues of Heterobasidion irregulare and from mycelium grown on liquid MMN medium, liquid medium amended with lignin or cellulose and on wood.
Project description:The goal is to look at changes in the pattern of expression of the xylem transcriptome through the growth season in two spruces (Picea glauca and Picea abies). One-color comparison of active xylem collected in June, July, August and September, in two spruce species. Six biological repetitions per time point and specie, for a total of 48 slides.
Project description:In conifer forests of Northern Europe, a pathogenic fungus Heterobasidion annosum attacks the roots of Scots pine and causes mortality. Trees with infection grow slower and produce less timber with reduced quality. Despite applied control methods, such as switching tree species to a non-host species, or stump treatment, root and butt rot continues to be a serious forest health problem. Disease resistance breeding is a less-applied control method which has potential to improve tree health. However, neither conifer genotypes with absolute resistance to Heterobasidion sp. nor robust selection markers for resistance breeding have been found. We studied the responses of various Scots pine genotypes to Heterobasidion annosum infection and mechanic damage in drained peatland. Stems and roots of mature naturally regenerated Scots pine trees growing in drained peatland were either artificially infected with H. annosum or wounded and inoculated with sterile inoculum. Untreated trees from the study sites served as controls. Responses of different Scots pine genotypes to pathogen infection as determined by lesion size were recorded from samples harvested four months after inoculation, and least susceptible and highly susceptible genotypes were selected from the study material. Analysis of terpenoids from both least susceptible and highly susceptible pine genotypes by gas chromatography coupled with mass spectrometry indicates that some monoterpenes and sesquiterpenes are differentially induced depending on the susceptibility level. Transcriptomic microarray analysis was therefore conducted with RNA from stems of the least susceptible and highly susceptible Scots pine genotypes. Gene expression data from cDNA microarray were analysed by comparisons between the treatments, and the genotypes with different resistance level. The aim of the study is to highlight transcripts specific to differing levels of susceptibility.