ABSTRACT: In flies, microRNAs (miRNAs) are synthesized as a short imperfect duplex, where the miRNA is paired to another small RNA, dubbed the "miRNA*". Usually, miRNA*s are degraded in the last steps of miRNA maturation, but we found evidence that some of them can be loaded on the Ago2 protein. Small RNAs (18-29 nt) from fly heads (WT, ago2 mutants, dcr-2 homozygous and heterozygous mutants) were sequenced using a Solexa Genome Analyzer instrument. The ago2 cDNA library was loaded twice on the instrument, yielding two technical replicates.
Project description:In flies, small silencing RNAs are sorted between Argonaute1 (Ago1), the central protein component of the microRNA (miRNA) pathway, and Argonaute2 (Ago2), which mediates RNA interference. Extensive double-stranded characterM-bM-^@M-^Tas is found in small interfering RNAs (siRNAs)M-bM-^@M-^Tdirects duplexes into Ago2, whereas central mismatches, like those found in miRNA/miRNA* duplexes, direct duplexes into Ago1. Central to this sorting decision is the affinity of the small RNA duplex for the Dcr-2/R2D2 heterodimer, which loads small RNAs into Ago2. Here, we show that while most Drosophila miRNAs are bound to Ago1, miRNA* strands accumulate bound to Ago2. Like siRNA loading, efficient loading of miRNA* strands in Ago2 favors duplexes with a paired central region and requires both Dcr-2 and R2D2. Those miRNA and miRNA* sequences bound to Ago2, like siRNAs diced in vivo from long double-stranded RNA, typically begin with cytidine, whereas Ago1-bound miRNA and miRNA* disproportionately begin with uridine. Consequently, some pre-miRNA generate two or more isoforms from the same side of the stem that differentially partition between Ago1 and Ago2. Our findings provide the first genome-wide test for the idea that Drosophila small RNAs are sorted between Ago1 and Ago2 according to their duplex structure and the identity of their first nucleotide. Sequencing of small RNAs (either total small RNAs or Ago1-associated small RNAs) in wild-type, dcr-2 and r2d2 mutant flies. Small RNA sequencing, Small RNAs (18-29 nt long), Size selection (18 to 30 nt).
Project description:Small interfering RNAs (siRNAs) direct RNA interference (RNAi) in eukaryotes. In flies, somatic cells produce siRNAs from exogenous double-stranded RNA as a defense against viral infection. Here, we identify 21-nt long, endogenous siRNAs (endo-siRNAs) corresponding to transposons and heterochromatic sequences in the somatic cells of Drosophila melanogaster. We also detected endo-siRNAs complementary to mRNAs: these siRNAs disproportionately mapped to the complementary regions of overlapping mRNAs predicted to form dsRNA in vivo. Normal accumulation of somatic endo-siRNAs requires the siRNA-generating ribonuclease, Dicer-2, and the RNAi effector protein, Ago2. We propose that endo-siRNAs generated by the fly RNAi pathway silence selfish genetic elements in the soma much as piRNAs do in the germ line. Keywords: Small RNA detection and quantification. Small RNAs (18-30 nt) from fly heads (WT, ago2 mutants, dcr-2 homozygous and heterozygous mutants, and WT expressing an inverted repeat directed against exon 3 of the gene "white") and S2 cells (transgenic for a construct expressing siRNAs against white and GFP) were sequenced using a Solexa Genome Analyzer instrument. Raw sequence data files for this study are available for download from the SRA FTP site at ftp://ftp.ncbi.nlm.nih.gov/sra/Studies/SRP000/SRP000181
Project description:Understanding the function of individual miRNA species in mice would require the production of hundreds of loss-of-function strains. To accelerate analysis of miRNA biology in mammals, we combined recombinant adeno-associated virus (rAAV) vectors with miRNA ‘Tough Decoys’ (TuDs) to inhibit specific miRNAs. Intravenous injection of rAAV9 expressing anti-miR-122 or anti-let-7 TuD depleted the corresponding miRNA and increased its mRNA targets. rAAV producing anti-miR-122—but not anti-let-7—TuD reduced serum cholesterol by 40% for 18 weeks in wild-type mice and reduced serum LDL by 50% in LDL receptor-deficient mice. High throughput sequencing of liver miRNAs from the treated mice confirmed that the targeted miRNA, but no other miRNAs, were depleted and revealed that TuD RNAs induce miRNA tailing and trimming in vivo. rAAV-mediated miRNA inhibition thus provides a simple way to study miRNA function in adult mammals and a potential therapy for dyslipidemia and other diseases caused by miRNA deregulation. Examining the effect of Tough Decoy miRNA inhibitors on miRNA stability and integrity
Project description:Background: Metazoan embryos undergo a maternal-to-zygotic transition (MZT) during which a subset of maternal gene products is eliminated and the zygotic genome becomes transcriptionally active. RNA-binding proteins (RBPs) and the microRNA-induced silencing complex (miRISC) â of which Argonaute 1 (AGO1) is a key component in Drosophila â target maternal mRNAs for degradation. The Drosophila Smaug, Brain tumor (BRAT) and Pumilio (PUM) RBPs direct the degradation of maternal mRNAs. Here we elucidate Smaugâs roles in regulation of miRNAs and miRISC during the MZT. Results: By global analysis of small RNAs at several stages during the MZT, we show that the vast majority of all miRNA species encoded by the Drosophila genome (85%) are expressed during the MZT. Whereas a subset of these miRNAs is loaded into oocytes by the mother and stays at constant levels during the MZT, dozens of miRNA species are either newly synthesized or re-expressed in the early embryo. Loss of Smaug has a profound effect on miRNAs but little effect on piRNAs or siRNAs. Smaug is required for production of new miRNAs during the MZT; Smaug-bound AGO1 reflects the constellation and abundance of the miRNAs present in early embryos; and Smaug is required for the increase in AGO1 protein levels that occurs during the MZT. As a consequence of low miRISC activity in smaug mutants, maternal mRNAs that are normally targeted for degradation by zygotic miRNAs fail to be cleared. BRAT and PUM share target mRNAs with miRISC during the MZT while the miR-309 miRNA family coregulates targets of BRAT but not PUM. Conclusions: Smaug controls the MZT through direct targeting of a subset of maternal mRNAs for degradation and, indirectly, through production and function of miRNAs and miRISC, which control clearance of a distinct subset of maternal mRNAs. BRAT and/or PUM function together with miRISC during the latter process. With respect to miRISC-dependent transcript degradation, Smaug is required (1) for the synthesis of miRNAs, (2) for synthesis and stabilization of AGO1, and (3) for action of AGO1 in association with its bound miRNAs. In smaug mutants a large number of maternal mRNAs persist and the MZT fails. Examination of miRNA expresssion at different time points in wild type and smuag mutant early embryos .
Project description:Using high throughput sequencing of Drosophila head RNA, a small set of miRNAs that undergo robust circadian oscillations in levels were discovered. We concentrated on a cluster of six miRNAs, mir-959-964, all of which peak at about ZT12 or lights-off. The data indicate that the cluster pri-miRNA is transcribed under bona fide circadian transcriptional control and that all 6 mature miRNAs have short half-lives, a requirement for oscillating. Manipulation of food intake dramatically affects the levels and timing of cluster miRNA transcription with no more than minor effects on the core circadian oscillator. This indicates that the central clock regulates feeding, which in turn regulates proper levels and cycling of the cluster miRNAs. Viable Gal4 knock-in as well as cluster knock-out and over-expression strains were used to localize cluster miRNA expression as well as explore their functions. The adult head fat body is a major site of expression, and feeding behavior, innate immunity, metabolism, and perhaps stress responses are under cluster miRNA regulation. The feeding behavior results indicate that there is a feedback circuit between feeding time and cluster miRNA function as well as a surprising role of post-transcriptional regulation in these behaviors and physiology. Six samples of small RNA libraries (RNA size 19 to 29 nucleotides long) were prepared from Drosophila heads, each collected at one circadian time point during a light-dark cycle (ZT0, ZT4, ZT8, ZT12, ZT16, ZT20).
Project description:Asymmetric selection of single-stranded guide RNAs from double-stranded RNA (dsRNA) precursors is crucial for RNA silencing-mediated gene regulation. However, the precise mechanisms for small RNA asymmetry remain unclear, especially since asymmetric selection can still occur under depletion of putative asymmetry sensors, Drosophila R2D2 and mammalian Dicer. Here we report direct contribution of mammalian Argonaute 2 (Ago2) to microRNA (miRNA) asymmetry. Ago2 selects strands with 5´-uridine/adenosine and thermodynamically unstable 5´-ends in parallel through its two sensor regions, which contact 5´-nucleobase and 5´-phosphate(s) of the prospective guide strands, respectively. Consistently, miRNA asymmetry shows characteristic digital-analog superposed patterns reflecting 5'-end nucleotide identity and thermodynamic stability. Furthermore, we demonstrate that cancer-associated miRNA variations reprogram asymmetric selection. Finally, our study presents a model of this universal principle that will aid a comprehensive understanding of miRNA function and therapeutic reinvention of RNA silencing in precision medicine. Immunoprecipitation of WT or mutant Ago2 in mouse ES cells (Ago-null background) and small RNA sequencing
Project description:This SuperSeries is composed of the following subset Series: GSE40894: The Oscillating miRNA 959-964 cluster impacts Drosophila feeding time and other circadian outputs [expression]. GSE40943: The Oscillating miRNA 959-964 cluster impacts Drosophila feeding time and other circadian outputs [miRNA-seq]. Refer to individual Series
Project description:The reduced sperm count observed in Ago2 cKO mice implies that AGO2 has non-redundant functions in the male germ line. Because AGO2 is a key protein in the RNA interference (RNAi) pathway, we first postulated that AGO2 loss disrupts normal transcriptional and translational dynamics of target mRNAs relevant to sperm maturation. To address this hypothesis, we took advantage of the apparently normal spermatogenesis in Ago2 cKO mice, which allowed us to purify matched meiotic and post-meiotic germ cells from Ago2 cKO and wild type controls. We examined changes in the transcriptome and proteome of these two spermatogenic stages in Ago2 cKO relative to control mice using RNA-seq and quantitative mass spectrometry (MS). To further examine if the changes in mRNA and protein levels detected in Ago2 cKO germ cells was due to a loss of regulation by the canonical AGO2-miRNA pathway, we characterized AGO2 protein interactors by AGO2 immunoprecipitation-mass spectrometry (IP-MS) in cytoplasmic and nuclear fractions of post-meiotic cells
Project description:Drosophila melanogaster expresses three classes of small RNAs, which are classified according to their mechanisms of biogenesis. MicroRNAs are ~22-23-nt, ubiquitously expressed small RNAs that are sequentially processed from hairpin-like precursors by Drosha/Pasha and Dcr-1/Loquacious complexes. MicroRNAs usually associate with AGO1 and regulate the expression of protein-coding genes. Piwi-interacting RNAs (piRNAs) of ~24-28-nt associate with Piwi-family proteins and can arise from single-stranded precursors. piRNAs function in transposon silencing and are mainly restricted to gonadal tissues. Endo-siRNAs are found in both germline and somatic tissues. These ~21-nt RNAs are produced by a distinct Dicer, Dcr-2, and do not depend on Drosha/Pasha complexes. They predominantly bind to AGO2 and target both mobile elements and protein-coding genes. Surprisingly, a subset of endo-siRNAs strongly depend for their production on the dsRNA-binding protein Loquacious (Loqs), thought generally to be a partner for Dcr-1 and a co-factor for miRNA biogenesis. Endo-siRNA production depends on a specific Loqs isoform, Loqs-PD, which is distinct from the one, Loqs-PB, required for the production of microRNAs. Paralleling their roles in the biogenesis of distinct small RNA classes, Loqs-PD and Loqs-PB bind to different Dicer proteins, with Dcr-1/Loqs-PB complexes and Dcr-2/Loqs-PD complexes driving microRNA and endo-siRNA biogenesis, respectively. Small RNA profiling by high throughput sequencing Total RNA was isolated using Trizol reagent (Invitrogen) and size-fractionated by PAGE into 19-24nt. These were independently processed and sequenced using the Illumina GAII platform. In total, six libraries were analyzed.
Project description:Increasing evidence suggests that global downregulation of miRNA expression is a hallmark of human cancer, potentially due to defects in the miRNA processing machinery. In this study, we found that the protein expression of Argonaute 2 (AGO2), a key regulator of miRNA processing, was downregulated in colorectal cancer (CRC) tissues, which was also consistent with the findings of the Clinical Proteomic Tumor Analysis Consortium (CPTAC). Furthermore, the correlation between the levels of AGO2 and epithelial-mesenchymal transition (EMT) markers (E-cadherin and vimentin) indicated that reduced levels of AGO2 promoted EMT in CRC. Low expression of AGO2 was an indicator of a poor prognosis among CRC patients. Knockdown of AGO2 in CRC cells promoted migration, invasion and metastasis formation in vitro and in vivo but had no influence on proliferation. To provide detailed insight into the regulatory roles of AGO2, we performed integrated transcriptomic, quantitative proteomic and microRNA sequencing (miRNA-seq) analyses of AGO2 knockdown cells and the corresponding wild-type cells and identified neuropilin 1 (NRP1) as a new substrate of AGO2 via miR-185-3p. Our data provided evidence that knockdown of AGO2 resulted in a reduction of miR-185-3p expression, leading to the upregulation of the expression of NRP1, which is a direct target of miR-185-3p, and elevated CRC cell metastatic capacity. Inhibition of NRP1 or treatment with a miR-185-3p mimic successfully rescued the phenotypes of impaired AGO2, which suggested that therapeutically targeting the AGO2/miR-185-3p/NRP1 axis may be a potential treatment approach for CRC.