Profiling of gender based transcripts of Brugia malayi
Ontology highlight
ABSTRACT: Transcriptional profiling of adult males and females of the lymphatic dwelling filarial parasite Brugia malayi Keywords: Gender based transcripts, filaria Three biological replicates of male and female RNA used for hybridization to examine the gender-specifc transcripts
Project description:Filarial nematodes are arthropod-borne nematodes that cause a variety of economically important diseases such as onchocerciasis (river blindness), lymphatic filariasis, and heartworm disease. The most widespread filarial disease of humans is lymphatic filariasis, caused by worms in the genera Wuchereria and Brugia. Lymphatic filariasis is an economic and social burden in endemic countries and affects approximately 119 million people worldwide (Michael, 1997). In humans, the worms live in and block the lymph vessels, causing improper flow of lymph, and inflammation of the lymphatic system. The symptoms are fever, swollen limbs and genitals, generalized malaise, and can progress to a debilitating condition known as elephantiasis This research focuses on the transmission of these worms to the disseminating mosquito host, and it is based on the interesting observation that mf must be at least 7 days old to successfully infect the mosquito (de Hollanda, 1982). Newborn mf that have not âmaturedâ cannot successfully penetrate the midgut of the mosquito, and subsequently cannot develop to the L3 stage (Fuhrman, 1987). Previous work done by another group 20 years ago suggests that the molecular makeup of the worm surface changes during this maturation process (Furman, 1983 a and b). We used microarray analysis to characterize changes in gene expression that take place during the mf maturation process. Understanding the gene expression changes that occur as the mf mature will allow us to understand the nature of the philological transition that allows mf to move from the human to the mosquito host. With this information in hand, we can eventually identify parasite molecules that could be targeted to either stop parasite reproduction or prevent transmission of the mf to the mosquito. This would stop parasite transmission in endemic areas. Two biological replicates were performed each with two technical replicates.
Project description:High-throughput sequencing to profile the transcriptome of the human filarial nematode Brugia malayi, the causative agent of lymphatic filariasis, across multiple life-cycle stages.
Project description:To observe the global changes in the lymphatic endothelial cells upon exposure to filarial antigens or parasites, LECs were stimulated for 24, 48, and 72hrs and the expression profiles were carried out. Human filarial parasites Brugia malayi and Wuchereria bancrofti habitat the lymphatics and cause lymphatic dilatation and lymphedema. In order to evaluate the effect of various stage specific effects on the lymphatic endothelial cells (LEC) and understand how they modulate the lymphatic dysfunction, LECs were stimulated in antigens derived from the Brugia malayi. These are preliminary time course data towards understanding how the filarial antigens induce lymphangiogenesis.
Project description:A proteomics strategy was used to identify putative GPI-APs from adult B. malayi. Three different sample types were prepared for analysis. Firstly, intact adult worms were treated with PI-PLC to enzymatically release and solubilize the protein away from the lipid moiety. A mock-treatment with no PI-PLC was performed as a negative control. The samples derived from treatment of the intact worms have been named “Surface” but it should be noted that the proteins could originate from any exposed surface like the mouth, vagina, or rectum of the worm. Secondly, a membrane fraction of B. malayi adult female worms was prepared by ultracentrifugation of a total lysate in a sucrose buffer to separate membrane proteins from soluble proteins. This membrane fraction was also treated with PI-PLC or mock-treated without PI-PLC as a negative control. Lastly, a GPI-AP enriched sample was prepared by performing a series of organic solvent partitions to extract GPI-APs from a membrane fraction. This sample was not treated with PI-PLC. Proteins in all three samples types were digested with trypsin and the resulting peptides analyzed by LC-MS/MS.
Project description:Filarial nematodes are arthropod-borne nematodes that cause a variety of economically important diseases such as onchocerciasis (river blindness), lymphatic filariasis, and heartworm disease. The most widespread filarial disease of humans is lymphatic filariasis, caused by worms in the genera Wuchereria and Brugia. Lymphatic filariasis is an economic and social burden in endemic countries and affects approximately 119 million people worldwide (Michael, 1997). In humans, the worms live in and block the lymph vessels, causing improper flow of lymph, and inflammation of the lymphatic system. The symptoms are fever, swollen limbs and genitals, generalized malaise, and can progress to a debilitating condition known as elephantiasis This research focuses on the transmission of these worms to the disseminating mosquito host, and it is based on the interesting observation that mf must be at least 7 days old to successfully infect the mosquito (de Hollanda, 1982). Newborn mf that have not â??maturedâ?? cannot successfully penetrate the midgut of the mosquito, and subsequently cannot develop to the L3 stage (Fuhrman, 1987). Previous work done by another group 20 years ago suggests that the molecular makeup of the worm surface changes during this maturation process (Furman, 1983 a and b). We used microarray analysis to characterize changes in gene expression that take place during the mf maturation process. Understanding the gene expression changes that occur as the mf mature will allow us to understand the nature of the philological transition that allows mf to move from the human to the mosquito host. With this information in hand, we can eventually identify parasite molecules that could be targeted to either stop parasite reproduction or prevent transmission of the mf to the mosquito. This would stop parasite transmission in endemic areas. Brugia pahangi mature mf (30 days and older) RNA was compared to immature mf (3 days and younger). Three biological replicates were performed each with two technical replicates
Project description:Comparative analysis of gene expression profiles provided novel insights into the genes that are transcriptionally active in infective and developing larvae of two closely related species. Species differences may indicate different metabolic adaptations that could affect host specificity, tissue tropism, and pathogenicity Two biological replicates of infective (L3) or developing larval RNA used for hybridization, in duplicate, to examine the gene expression changes in Brugia larvae Brugia malayi vector derived third stage larvae (Bm VL3); Brugia pahangi vector derived third stage larvae (Bp VL3); Brugia pahangi L3 cultured in vitro (Bp cL3); Brugia pahangi L3 derived from peritoneal cavity of infected gerbils (Bp ipL3); Brugia pahangi migrating L3 (Bp mL3) from infected gerbils
Project description:Doxycycline treatment affects gene expression in Wolbachia and Brugia malayi adult female worms in vivo Two biological replicates of female RNA used for hybridization, in duplicate, to examine the gene expression changes in Wolbachia and Brugia
Project description:Transcriptional profiling of adult males and females of the lymphatic dwelling filarial parasite Brugia malayi Keywords: Gender based transcripts, filaria