Stat5-regulated gene expression in human prostate cancer cells
Ontology highlight
ABSTRACT: Transcription factor Stat5 is constitutively active in human prostate cancer but not in normal prostate epithelium. Stat5 activation is associated with prostate cancer lesions of high histological grades, and is present in the majority of castration-resistant recurrent human prostate cancers. The molecular mechnisms underlying constitutive activation of Stat5 in primary and recurrent human prostate cancer are currently unclear. We used microarrays to detail gene expression regulated by Stat5 in human prostate cancer cells. DU145 human prostate cancer cells were transfected with Stat5a/b siRNA or scramble siRNA as control. After 48 h, the cells were harvested and total RNA was prepared for Affymetrix microarrays.
Project description:Identification of the molecular changes that promote viability and metastatic behaviour of prostate cancer cells is critical for the development of improved therapeutic interventions for prostate cancer. Stat5a/b and Stat3 are both constitutively active in locally-confined and advanced prostate cancer, and both transcription factors have been reported to be critical for the viability and growth of prostate cancer cells. We used microarrays to compare gene expression profiles regulated by Stat5a/b vs. Stat3 in human prostate cancer cells. DU145 and CWR22Rv1 human prostate cancer cells were transfected with Stat3 siRNA, Stat5a/b siRNA or scramble siRNA as control. After 48 h, the cells were harvested and total RNA was prepared for Affymetrix microarrays.
Project description:Activation of Signal Transducer and Activator of Transcription 3 (STAT3) is common in prostate cancers. STAT3 may induce cell proliferation and resistance to apoptosis, as well as promote tumor angiogenesis, invasion, and migration by activating gene expression. Many STAT3-dependent transcriptional responses are mediated through protein-protein interactions that involve the amino-terminal domain (N-domain). In this study, we found that inhibition of the STAT3 N-domain using novel inhibitor ST3-Hel2A-2 induces apoptotic death in prostate cancer cells. The cell death was accomponied by robust activation of pro-apoptotic gene. Using chromatin immunoprecipitation and tiling human promoter arrays (ChIP-chip), we have defined genome-wide targets of STAT3 in DU145 prostate cancer cells. We found that upregulated pro-apoptotic genes were bound by STAT3 in prostate cancer cells, and that STAT3 binding was decreased following inhibition of the STAT3 N-domain. STAT3 siRNA knockdow confirmed specificity of STAT3 binding and changes in gene expression. DU145 cells were treated with STAT3 siRNA or scrambled siRNA for 48hr. Total RNA has been extracted and prepared for hybridization on Affymetrix HG-U133A 2.0 arrays.
Project description:Interleukin 2 (IL-2), a cytokine linked to human autoimmune diseases, limits IL-17 production. We show that deletion of Stat3 in T cells abrogates IL-17 production and attenuates autoimmunity associated with IL-2 deficiency. While STAT3 induces IL-17 and RORγt and inhibits Foxp3, IL-2 inhibited IL-17 independently of Foxp3 and RORγt. We found that STAT3 and STAT5 bound to multiple common sites across the Il17 genetic locus. The induction of STAT5 binding by IL-2 was associated with a reduction in STAT3 binding at these sites and the inhibition of associated active epigenetic marks. Titrating the relative activation of STAT3 and STAT5 modulated TH17 cell specification. Thus, the balance rather than the absolute magnitude of these signals determines the propensity of cells to make a key inflammatory cytokine. The genome-wide binding of STAT3 and STAT5 under Th17 conditions was investigated by CHIP-seq.
Project description:Prostate cancer is the most common cancer in men. We identified that miR-29 family is the most androgen-responsive miRNA in hormone-refractory prostate cancer cells. For the screening of miR-29b target, we performed microarray analysis in two prostate cancer cells. Because TET2 is the primary target of miR-29 family by our analysis, we also performed TET2 signaling by microarray. In order to investigate the downsteam signals mediated by TET2 and miR-29b, we performed comprehensive analysis of gene expression in positive prostate cancer cell lines after siTET2 or miR-29b treatment. Observation of gene expression changes after treatmet with siRNA targeting TET2 or miR-29b in prostate cancer cell lines with microarray.
Project description:Transcription factor Stat5 is constitutively active in human prostate cancer but not in normal prostate epithelium. Stat5 activation is associated with prostate cancer lesions of high histological grades, and is present in the majority of castration-resistant recurrent human prostate cancers. The molecular mechnisms underlying constitutive activation of Stat5 in primary and recurrent human prostate cancer are currently unclear. We used microarrays to detail gene expression regulated by Stat5 in human prostate cancer cells.
Project description:The excessive and continuous activated Janus kinase/signal transducer and activator of transcription (JAK/STAT) pathway leads to the proliferation and migration of malignant cells resulting in the occurrence and development of almost all of cancers. The defined gene sets specifically activated by different STAT proteins are relied on their genomic accessibility by the interplay of certain STAT proteins with other potential cofactors. However, we have no clue about the status of human activated STAT dimers in the nucleus, as well as the intercrossing modules of synergic, supplementary or competitive relationship among each other in colorectal cancer. In current study, chromatin immunoprecipitation sequencing (ChIP-seq) was conducted to explore the genome-scale binding signatures of STAT1, STAT2, STAT3, STAT5A/B and STAT6 in human HCT-116 CRC cells. Moreover, STAT3 binding on genomic DNA was also investigated in HCT116 cells with NR5A2 knockdown.
Project description:To dissect regulatory processes of cell proliferation and differentiation we generated mouse strains carrying any combination of the four Stat5 alleles, thus expressing STAT5 from 0 to 100%. RNA-Seq analyses revealed that different STAT5 levels activate specific genetic programs linked to cell proliferation and differentiation. We refer to wild-type mice and Stat5abfl/fl mice as AABB mice; Stat5abfl/fl;MMTV-Cre (with Stat5ab-deficient mammary epithelial cells) as Null mice; Stat5a-/- mice as BB mice; Stat5b-/- mice as AA mice; Stat5ab+/null mice as AB mice.
Project description:Interleukin 2 (IL-2), a cytokine linked to human autoimmune diseases, limits IL-17 production. We show that deletion of Stat3 in T cells abrogates IL-17 production and attenuates autoimmunity associated with IL-2 deficiency. While STAT3 induces IL-17 and ROR?t and inhibits Foxp3, IL-2 inhibited IL-17 independently of Foxp3 and ROR?t. We found that STAT3 and STAT5 bound to multiple common sites across the Il17 genetic locus. The induction of STAT5 binding by IL-2 was associated with a reduction in STAT3 binding at these sites and the inhibition of associated active epigenetic marks. Titrating the relative activation of STAT3 and STAT5 modulated TH17 cell specification. Thus, the balance rather than the absolute magnitude of these signals determines the propensity of cells to make a key inflammatory cytokine. The roles of STAT3 and STAT5 in regulation of gene expression under Th17 differentiation was investigated. Affymetrix Mouse Genome 430 2.0 Arrays were used to evaluate global gene expression.
Project description:Identification of genes in DNA damage response and repair pathways differentially transcribed or translated under anoxia or hypoxia in GM05757 normal human fibroblast cells and DU145 human prostate cancer cells. Comparison of mRNA abundance and translation efficiency of genes in DNA damage response and repair pathways in selected anoxia/hypoxia-treated cells with those in normoxia-treated controls.
Project description:Prostate cancer is a common cause of cancer-related death in men. E6AP, an E3 ubiquitin ligase and a transcription cofactor, is elevated in a subset of prostate cancer patients. Genetic manipulations of E6AP in prostate cancer cells expose a role of E6AP in promoting growth and survival of prostate cancer cells in vitro and in vivo. However, the effect of E6AP on prostate cancer cells is broad and it cannot be explained fully by previously identified tumour suppressors, promyelocytic leukemia protein and p27, that are regulated by E6AP. To explore additional players that are regulated downstream of E6AP, we combined a transcriptomic and proteomic approaches. We identified and quantified 16,130 transcripts and 7,209 proteins in castration resistant prostate cancer cell line, DU145. A total of 2,763 transcripts and 308 proteins were considered significantly altered upon knockdown of E6AP. Pathway analyses supported the known phenotypic effect of E6AP knockdown in prostate cancer cells and in parallel exposed novel potential links of E6AP with cancer metabolism, DNA damage repair and immune response. Changes in expression of the top candidates were confirmed using real-time polymerase chain reaction. Of these, clusterin, a stress-induced chaperone protein commonly deregulated in prostate cancer was pursued further. Knockdown of E6AP resulted in increased clusterin transcript and protein levels in vitro and in vivo. Concomitant knockdown of E6AP and clusterin supported the contribution of clusterin to the phenotype induced by E6AP. Overall, results from this study provide insight intothe potential biological pathways controlled by E6AP in prostate cancer cells and identifies clusterin as a novel target of E6AP.