Transcription profiling of immortalized human lung epithelial cells following oncogenic KRAS expression and TBK1 suppression
Ontology highlight
ABSTRACT: The purpose of the dataset is to analyze expression of genes induced by KRAS and regulated by TBK1; The proto-oncogene KRAS is mutated in a wide array of human cancers, most of which are aggressive and respond poorly to standard therapies. Although the identification of specific oncogenes has led to the development of clinically effective, molecularly targeted therapies in some cases, KRAS has remained refractory to this approach. An alternative strategy for targeting KRAS is to identify gene products that, when suppressed or inhibited, result in cell death only in the presence of an oncogenic allele. Here we have used systematic RNA interference (RNAi) to detect synthetic lethal partners of oncogenic KRAS and found that the non-canonical IkB kinase, TBK1, was selectively essential in cells that harbor mutant KRAS. Suppression of TBK1 induced apoptosis specifically in human cancer cell lines that depend on oncogenic KRAS expression. In these cells, TBK1 activated NF- B anti-apoptotic signals involving cREL and BCL-XL that were essential for survival, providing mechanistic insights into this synthetic lethal interaction. These observations identify TBK1 as a potential therapeutic target in KRAS mutant tumors and establish a general approach for the rational identification of co-dependent pathways in cancer. Experiment Overall Design: Knock out of TBK1 in the contect of KRAS activation (mutant) and control (WT)
Project description:The proto-oncogene KRAS is mutated in a wide array of human cancers, most of which are aggressive and respond poorly to standard therapies. Although the identification of specific oncogenes has led to the development of clinically effective, molecularly targeted therapies in some cases, KRAS has remained refractory to this approach. An alternative strategy for targeting KRAS is to identify gene products that, when suppressed or inhibited, result in cell death only in the presence of an oncogenic allele. Here we have used systematic RNA interference (RNAi) to detect synthetic lethal partners of oncogenic KRAS and found that the non-canonical IkB kinase, TBK1, was selectively essential in cells that harbor mutant KRAS. Suppression of TBK1 induced apoptosis specifically in human cancer cell lines that depend on oncogenic KRAS expression. In these cells, TBK1 activated NF- B anti-apoptotic signals involving cREL and BCL-XL that were essential for survival, providing mechanistic insights into this synthetic lethal interaction. These observations identify TBK1 as a potential therapeutic target in KRAS mutant tumors and establish a general approach for the rational identification of co-dependent pathways in cancer. This SuperSeries is composed of the following subset Series:; GSE17643: Profiling of immortalized human lung epithelial cells following oncogenic KRAS expression and TBK1 suppression; GSE17671: Profiling of immortalized human lung epithelial cells following infection with oncogenic KRAS (G12V) Experiment Overall Design: Refer to individual Series
Project description:The purpose of the dataset is to analyze expression of genes induced by KRAS; The proto-oncogene KRAS is mutated in a wide array of human cancers, most of which are aggressive and respond poorly to standard therapies. Although the identification of specific oncogenes has led to the development of clinically effective, molecularly targeted therapies in some cases, KRAS has remained refractory to this approach. An alternative strategy for targeting KRAS is to identify gene products that, when suppressed or inhibited, result in cell death only in the presence of an oncogenic allele. Here we have used systematic RNA interference (RNAi) to detect synthetic lethal partners of oncogenic KRAS and found that the non-canonical IkB kinase, TBK1, was selectively essential in cells that harbor mutant KRAS. Suppression of TBK1 induced apoptosis specifically in human cancer cell lines that depend on oncogenic KRAS expression. In these cells, TBK1 activated NF- B anti-apoptotic signals involving cREL and BCL-XL that were essential for survival, providing mechanistic insights into this synthetic lethal interaction. These observations identify TBK1 as a potential therapeutic target in KRAS mutant tumors and establish a general approach for the rational identification of co-dependent pathways in cancer. Experiment Overall Design: Profiling of KRAS activation (mutant), KRAS WT and control in AALE cells (Lundberg et al., Oncogene 2002;21:4577)
Project description:The purpose of the dataset is to analyze expression of genes induced by KRAS and regulated by TBK1 The proto-oncogene KRAS is mutated in a wide array of human cancers, most of which are aggressive and respond poorly to standard therapies. Although the identification of specific oncogenes has led to the development of clinically effective, molecularly targeted therapies in some cases, KRAS has remained refractory to this approach. An alternative strategy for targeting KRAS is to identify gene products that, when suppressed or inhibited, result in cell death only in the presence of an oncogenic allele. Here we have used systematic RNA interference (RNAi) to detect synthetic lethal partners of oncogenic KRAS and found that the non-canonical IkB kinase, TBK1, was selectively essential in cells that harbor mutant KRAS. Suppression of TBK1 induced apoptosis specifically in human cancer cell lines that depend on oncogenic KRAS expression. In these cells, TBK1 activated NF- B anti-apoptotic signals involving cREL and BCL-XL that were essential for survival, providing mechanistic insights into this synthetic lethal interaction. These observations identify TBK1 as a potential therapeutic target in KRAS mutant tumors and establish a general approach for the rational identification of co-dependent pathways in cancer.
Project description:The proto-oncogene KRAS is mutated in a wide array of human cancers, most of which are aggressive and respond poorly to standard therapies. Although the identification of specific oncogenes has led to the development of clinically effective, molecularly targeted therapies in some cases, KRAS has remained refractory to this approach. An alternative strategy for targeting KRAS is to identify gene products that, when suppressed or inhibited, result in cell death only in the presence of an oncogenic allele. Here we have used systematic RNA interference (RNAi) to detect synthetic lethal partners of oncogenic KRAS and found that the non-canonical IkB kinase, TBK1, was selectively essential in cells that harbor mutant KRAS. Suppression of TBK1 induced apoptosis specifically in human cancer cell lines that depend on oncogenic KRAS expression. In these cells, TBK1 activated NF- B anti-apoptotic signals involving cREL and BCL-XL that were essential for survival, providing mechanistic insights into this synthetic lethal interaction. These observations identify TBK1 as a potential therapeutic target in KRAS mutant tumors and establish a general approach for the rational identification of co-dependent pathways in cancer. This SuperSeries is composed of the SubSeries listed below.
Project description:The purpose of the dataset is to analyze expression of genes induced by KRAS The proto-oncogene KRAS is mutated in a wide array of human cancers, most of which are aggressive and respond poorly to standard therapies. Although the identification of specific oncogenes has led to the development of clinically effective, molecularly targeted therapies in some cases, KRAS has remained refractory to this approach. An alternative strategy for targeting KRAS is to identify gene products that, when suppressed or inhibited, result in cell death only in the presence of an oncogenic allele. Here we have used systematic RNA interference (RNAi) to detect synthetic lethal partners of oncogenic KRAS and found that the non-canonical IkB kinase, TBK1, was selectively essential in cells that harbor mutant KRAS. Suppression of TBK1 induced apoptosis specifically in human cancer cell lines that depend on oncogenic KRAS expression. In these cells, TBK1 activated NF- B anti-apoptotic signals involving cREL and BCL-XL that were essential for survival, providing mechanistic insights into this synthetic lethal interaction. These observations identify TBK1 as a potential therapeutic target in KRAS mutant tumors and establish a general approach for the rational identification of co-dependent pathways in cancer.
Project description:Non-small-cell lung cancer (NSCLC) is a highly lethal tumor that often develops resistance to targeted therapy. It is shown that Tank-binding kinase 1 (TBK1) phosphorylates AGO2 at S417 (pS417-AGO2), which promotes NSCLC progression by increasing the formation of microRNA-induced silencing complex (miRISC). High levels of pS417-AGO2 in clinical NSCLC specimens are positively associated with poor prognosis. Interestingly, the treatment with EGFR inhibitor Gefitinib can significantly induce pS417-AGO2, thereby increasing the formation and activity of oncogenic miRISC, which may contribute to NSCLC resistance to Gefitinib. Based on these, two therapeutic strategies is developed. One is jointly to antagonize multiple oncogenic miRNAs highly expressed in NSCLC and use TBK1 inhibitor Amlexanox reducing the formation of oncogenic miRISC. Another approach is to combine Gefitinib with Amlexanox to inhibit the progression of Gefitinib-resistant NSCLC. This findings reveal a novel mechanism of oncogenic miRISC regulation by TBK1-mediated pS417-AGO2 and suggest potential therapeutic approaches for NSCLC.
Project description:The highest frequencies of KRAS mutations occur in colorectal carcinoma (CRC) and pancreatic ductal adenocarcinoma (PDAC). Therapeutically targeting downstream pathways mediating oncogenic properties of KRAS mutant cancers is limited by an incomplete understanding of the contextual cues modulating the signaling output of activated KRAS. We performed mass spectrometry on mouse tissues expressing wild-type or mutant KRAS to determine how tissue context and genetic background modulate oncogenic signaling. Mutant KRAS dramatically altered the proteomes and phosphoproteomes of pre-neoplastic and neoplastic colons and pancreases in a largely context-specific manner. We developed an approach to humanize the mouse networks with data from human cancer and identified genes within the CRC and PDAC networks synthetically lethal with mutant KRAS. Our studies demonstrate the context-dependent plasticity of oncogenic signaling, identify non-canonical mediators of KRAS oncogenicity within the KRAS-regulated signaling network, and demonstrate how statistical integration of mouse and human datasets can reveal cross-species therapeutic insights.
Project description:Many human oncogenes are challenging therapeutic targets. An alternative to direct targeting of oncogenes is to perform “synthetic lethality” screens for genes that are essential only in the context of specific cancer-causing mutations. We used high-throughput RNA interference (RNAi) to identify synthetic lethal interactions in cancer cells harboring mutant KRAS, the most commonly mutated human oncogene. We find that cells that are dependent on mutant KRAS exhibit sensitivity to suppression of the serine/threonine kinase STK33 irrespective of tissue origin, whereas STK33 is not required by KRAS-independent cells. STK33 promotes cancer cell viability in a kinase activity-dependent manner by regulating the suppression of mitochondrial apoptosis mediated through S6K1-induced inactivation of the death agonist BAD selectively in mutant KRAS-dependent cells. These observations identify STK33 as a target for treatment of the broad spectrum of mutant KRAS-driven cancers, and demonstrate the potential of RNAi screens for discovering critical functional dependencies created by oncogenic mutations that may enable therapeutic intervention for cancers associated with “undruggable” genetic alterations.
Project description:B-DNA-induced gene expression profile in wild-type, TBK1, IKKi(Ikbke), or TBK1 IKKi doubly deficient embryonic fibroblats; to elucidate how TBK1 and/or IKKi mediates B-DNA-mediated innate immune responses. Experiment Overall Design: Total RNA was extracted from embryonic fibroblats transfected for 4 h with or without poly(dA-dT)-poly(dT-dA), after which cRNA was synthesized. Preparation of cRNA, hybridization and scanning of the microarray were done according to the manufacturer's instructions (Affymetrix). A microarray (MG U74A version 2; Affymetrix) was used with Microarray Suite software (version 5.0; Affymetrix) and GeneSpring software (Silicon Genetics).