Transcription profiling of Arabidopsis TOC1-ox transcriptional networks
Ontology highlight
ABSTRACT: To gain insights into the mechanisms of TOC1 function in the Arabidopsis circadian clock we performed transcriptional profiling of Wild-Type (WT) and and TOC1 overexpressor plants (TOC1-ox). Experiment Overall Design: Comparisons of WT and TOC1-ox. Three biological replicates synchronized under 12-hour light:12-hour dark (LD) cycles for 12 days. Samples were collected at Zeitgeber Time 15 (ZT15).
Project description:To gain insights into the mechanisms of TOC1 function in the Arabidopsis circadian clock we performed transcriptional profiling of Wild-Type (WT) and and TOC1 overexpressor plants (TOC1-ox).
Project description:Circadian control of gene expression has been established in plants at the transcriptional level, but relatively little is known about circadian control of translation. We used polysome profiling to characterize regulation of transcription and translation over a 24-hour diurnal cycle in Arabidopsis, both in wild type and in plants with a disrupted clock due to constitutive overexpression of the CIRCADIAN CLOCK ASSOCIATED 1 gene (CCA1-ox, AGI AT2G46830). 10 day-old wild type and CCA1-ox (described in Cell. 1998 Jun 26;93(7):1207-17) Arabidopsis seedlings were harvested at 6am (Zeitgeber time ZT0), 12pm (ZT6), 6pm (ZT12), and 12am (ZT18), with 3 replicates for each time and genotype.
Project description:Circadian control of gene expression has been established in plants at the transcriptional level, but relatively little is known about circadian control of translation. We used polysome profiling to characterize regulation of transcription and translation over a 24-hour diurnal cycle in Arabidopsis, both in wild type and in plants with a disrupted clock due to constitutive overexpression of the CIRCADIAN CLOCK ASSOCIATED 1 gene (CCA1-ox, AGI AT2G46830). 10 day-old wild type and CCA1-ox (described in Cell. 1998 Jun 26;93(7):1207-17) Arabidopsis seedlings were harvested at 6am (Zeitgeber time ZT0), 12pm (ZT6), 6pm (ZT12), and 12am (ZT18), with 3 replicates for each time and genotype.
Project description:To gain insights into the mechanisms of TOC1 function in the Arabidopsis circadian clock we performed transcriptional profiling of Wild-Type (WT) and and TOC1 mutant plants (toc1-2) under constant light conditions for two days. Comparisons of WT and toc1-2. Two biological replicates each per array. Two Arabidopsis Oligonucleotide Microarrays (two-color Cy3 and Cy5). synchronized under 12-hour light:12-hour dark (LD) cycles for 10 days followed by two days under constant light conditions. Samples were collected at circadian time 16 (CT16).
Project description:In order to study possible effects of cryptochrome 2-mediated light signals on the global expression profiles of tomato genes, we performed large scale transcription comparisons in wt and CRY2-OX by using a DNA microarray of more than 90,000 tomato oligo-probes.<br>Tomato plants were grown under a daily light cycle of 16h light/8h darkness (LD) and leaves from both genotypes were sampled at presumptive dawn (Zeitgeber time (ZT) 0), eight hours after dawn (ZT8), at presumptive dusk (ZT16) and four hours after dusk (ZT20).
Project description:LDL or Ox-LDL 200ug/ml, which showed no loss of viability after a 48 hour exposure, induced a physiological and pathological transcriptional response, respectively. LDL induced a downregulation of genes associated with cholesterol biosynthesis while ox-LDL induced transcriptional alterations in genes related to inflammation, matrix expansion, lipid metabolism and processing, and apoptosis. Pentraxin-3 was secreted into the culture medium after RPE cells were stimulated with ox-LDL, and immunohistochemically evident in Bruch’s membrane of human macular samples with age-related macular degeneration. ARPE-19 cells exposed to 200?g/ml ox-LDL had a 38% apoptosis rate compared to less than 1% when exposed to LDL or untreated controls (p<0.0001). While LDL induced a physiologic response by RPE cells, a pathological phenotypic response was seen after treatment with oxidatively modified LDL. The transcriptional, biochemical, and functional data provide initial support of a role for the hypothesis that modified LDLs are one trigger for initiating events that contribute to the development of age-related macular degeneration. Keywords: treatment with non-treatment control
Project description:Wild Type and OsTZF1-OX plants were grown in soil in isolation green house for 2 weeks under flooded lowland conditions and a 12 h/12 h light/dark cycle (1000 umol photons/m2/s) at 28C (day) and 25C (night).
Project description:LDL or Ox-LDL 200ug/ml, which showed no loss of viability after a 48 hour exposure, induced a physiological and pathological transcriptional response, respectively. LDL induced a downregulation of genes associated with cholesterol biosynthesis while ox-LDL induced transcriptional alterations in genes related to inflammation, matrix expansion, lipid metabolism and processing, and apoptosis. Pentraxin-3 was secreted into the culture medium after RPE cells were stimulated with ox-LDL, and immunohistochemically evident in Bruchs membrane of human macular samples with age-related macular degeneration. ARPE-19 cells exposed to 200ug/ml ox-LDL had a 38% apoptosis rate compared to less than 1% when exposed to LDL or untreated controls (p<0.0001). While LDL induced a physiologic response by RPE cells, a pathological phenotypic response was seen after treatment with oxidatively modified LDL. The transcriptional, biochemical, and functional data provide initial support of a role for the hypothesis that modified LDLs are one trigger for initiating events that contribute to the development of age-related macular degeneration. Keywords: treatment with non-treatment control Human ARPE-19 cells were exposed to LDL or oxidatively modified LDL (ox-LDL) for 48 hours for RNA extraction and hybridization on Affymetrix microarrays. We sought to determine whether retina, pigment epithelial cells develop a pathologic phenotype after exposure to low density lipoproteins (LDL) that are oxidatively modified.We have made two comparsions: LDL treatment versus non-treatment; ox-LDL treatment versus non-treatment.
Project description:Vector control and OsTZF1-OX rice plants (O. sativa L. cv. Nipponbare) were grown in plastic pots filled with nutrient soil for 2 weeks under flooded lowland conditions and a 12 h/12 h light/dark cycle (1000 umol photons/m2/s) at 28C (day) and 25C (night). For NaCl treatment, two-week-old plants were transferred to 250 mM NaCl solution and incubated for 2 days under the above conditions.
Project description:Circadian control of gene expression has been established in plants at the transcriptional level, but relatively little is known about circadian control of translation. We used polysome profiling to characterize regulation of transcription and translation over a 24-hour diurnal cycle in Arabidopsis, both in wild type and in plants with a disrupted clock due to constitutive overexpression of the CIRCADIAN CLOCK ASSOCIATED 1 gene (CCA1-ox, AGI AT2G46830). 10 day-old wild type and CCA1-ox (described in Cell. 1998 Jun 26;93(7):1207-17) Arabidopsis seedlings were harvested at 6am (Zeitgeber time ZT0), 12pm (ZT6), 6pm (ZT12), and 12am (ZT18), with 3 replicates for each time and genotype.