Metabolomics,Unknown,Transcriptomics,Genomics,Proteomics

Dataset Information

0

Transcription profiling of human breast cancer brain metastases in a mouse xenograft model with vehicle of vorinostat treatment


ABSTRACT: Gene Expression Profiling of a Mouse Xenograft Model of â??Triple-Negativeâ?? Breast Cancer Brain Metastases With and Without Vorinostat Treatment. Purpose: As chemotherapy and molecular therapy improve the systemic survival of breast cancer patients, the incidence of brain metastases increases. Few therapeutic strategies exist for the treatment of brain metastases because the blood-brain barrier severely limits drug access. We report the pharmacokinetic, efficacy, and mechanism of action studies for the histone deactylase inhibitor vorinostat (suberoylanilide hydroxamic acid) in a preclinical model of brain metastasis of triple-negative breast cancer. Experimental Design: The 231-BR brain trophic subline of the MDA-MB-231 human breast cancer cell line was injected into immunocompromised mice for pharmacokinetic and metastasis studies. Pharmacodynamic studies compared histone acetylation, apoptosis, proliferation, and DNA damage in vitro and in vivo. Results: Following systemic administration, uptake of [14C]vorinostat was significant into normal rodent brain and accumulation was up to 3-fold higher in a proportion of metastases formed by 231-BR cells. Vorinostat prevented the development of 231-BR micrometastases by 28% (P = 0.017) and large metastases by 62% (P < 0.0001) compared with vehicle-treated mice when treatment was initiated on day 3 post-injection. The inhibitory activity of vorinostat as a single agent was linked to a novel function in vivo: induction of DNA double-strand breaks associated with the down-regulation of the DNA repair gene Rad52. Conclusions: We report the first preclinical data for the prevention of brain metastasis of triple-negative breast cancer. Vorinostat is brain permeable and can prevent the formation of brain metastases by 62%. Its mechanism of action involves the induction of DNA double-strand breaks, suggesting rational combinations with DNA active drugs or radiation. Experiment Overall Design: We performed gene expression profiling on metastases from vehicle- or vorinostat-treated mice to determine if alterations in gene expression were observable that were consistent with the phenotypes observed. Brain metastases from five vehicle-treated mice and six 150 mg/kg vorinostat-treated mice were procured by laser capture microdissection. RNA was extracted from the captured tumor cells from each brain and two rounds of linear amplification was done. The amplified RNA from each mouse was processed separately through microarray hybridization and analysis.

ORGANISM(S): Homo sapiens

SUBMITTER: Sean Davis 

PROVIDER: E-GEOD-18544 | biostudies-arrayexpress |

REPOSITORIES: biostudies-arrayexpress

altmetric image

Publications

Vorinostat inhibits brain metastatic colonization in a model of triple-negative breast cancer and induces DNA double-strand breaks.

Palmieri Diane D   Lockman Paul R PR   Lockman Paul R PR   Thomas Fancy C FC   Hua Emily E   Herring Jeanne J   Hargrave Elizabeth E   Johnson Matthew M   Flores Natasha N   Qian Yongzhen Y   Vega-Valle Eleazar E   Taskar Kunal S KS   Rudraraju Vinay V   Mittapalli Rajendar K RK   Gaasch Julie A JA   Bohn Kaci A KA   Thorsheim Helen R HR   Liewehr David J DJ   Davis Sean S   Reilly John F JF   Walker Robert R   Bronder Julie L JL   Feigenbaum Lionel L   Steinberg Seth M SM   Camphausen Kevin K   Meltzer Paul S PS   Richon Victoria M VM   Smith Quentin R QR   Steeg Patricia S PS  

Clinical cancer research : an official journal of the American Association for Cancer Research 20090929 19


<h4>Purpose</h4>As chemotherapy and molecular therapy improve the systemic survival of breast cancer patients, the incidence of brain metastases increases. Few therapeutic strategies exist for the treatment of brain metastases because the blood-brain barrier severely limits drug access. We report the pharmacokinetic, efficacy, and mechanism of action studies for the histone deactylase inhibitor vorinostat (suberoylanilide hydroxamic acid) in a preclinical model of brain metastasis of triple-nega  ...[more]

Similar Datasets

2009-10-14 | GSE18544 | GEO
2010-01-22 | GSE20016 | GEO
2010-01-21 | E-GEOD-20016 | biostudies-arrayexpress
2017-09-11 | PXD006005 | Pride
2013-05-08 | E-GEOD-46703 | biostudies-arrayexpress
2018-05-11 | GSE112776 | GEO
2024-01-11 | PXD042346 | Pride
2015-04-01 | GSE66495 | GEO
2014-03-04 | E-GEOD-44354 | biostudies-arrayexpress
| PRJNA121351 | ENA