Metabolomics,Unknown,Transcriptomics,Genomics,Proteomics

Dataset Information

0

Genome-wide binding profile for Heat Shock Factor (HSF).


ABSTRACT: Sequence-specific transcription factors (TFs) are critical for specifying patterns and levels of gene expression, but the DNA elements to which they can bind are not always sufficient to specify their binding in vivo. In eukaryotes, the binding of a TF is in competition with a constellation of other proteins, including histones which package DNA into nucleosomes. Here, we examine using the ChIP-seq assay, the genome-wide distribution of Drosophila Heat Shock Factor (HSF), a TF whose binding activity is mediated by heat shock-induced trimerization. We detect HSF binding to 464 sites, the vast majority of which contain HSF Sequence-binding Elements (HSEs) in Drosophila S2 cells, but these HSF-bound sites represent only a small fraction of HSEs present in the genome. We find a strong correlation of bound HSEs to active chromatin marks present prior to HSF binding, indicating an HSEM-bM-^@M-^Ys residence in open chromatin is a primary determinant of whether HSF can bind following heat shock. A single mock immunoprecipitation (IP) using the pre-innoculated animal serum was used as a background dataset for this study. For each condition (NHS and 20minute HS), we performed two independent HSF-ChIP-seq experiments. In addition, we performed two independent HSF-ChIP-seq experiments for each condition (NHS and 20minute HS) in cells that were highly depleted of HSF by RNAi.

ORGANISM(S): Drosophila melanogaster

SUBMITTER: Michael Guertin 

PROVIDER: E-GEOD-19025 | biostudies-arrayexpress |

REPOSITORIES: biostudies-arrayexpress

altmetric image

Publications

Chromatin landscape dictates HSF binding to target DNA elements.

Guertin Michael J MJ   Lis John T JT  

PLoS genetics 20100909 9


Sequence-specific transcription factors (TFs) are critical for specifying patterns and levels of gene expression, but target DNA elements are not sufficient to specify TF binding in vivo. In eukaryotes, the binding of a TF is in competition with a constellation of other proteins, including histones, which package DNA into nucleosomes. We used the ChIP-seq assay to examine the genome-wide distribution of Drosophila Heat Shock Factor (HSF), a TF whose binding activity is mediated by heat shock-ind  ...[more]

Similar Datasets

2021-12-24 | GSE192370 | GEO
2023-06-29 | PXD041872 | Pride
2010-09-02 | GSE19025 | GEO
2023-02-24 | GSE200269 | GEO
2016-03-01 | E-GEOD-71708 | biostudies-arrayexpress
2021-05-04 | GSE162434 | GEO
2007-02-26 | BIOMD0000000091 | BioModels
2016-10-12 | GSE81520 | GEO
2021-07-01 | GSE162066 | GEO
2021-07-01 | GSE162064 | GEO