ABSTRACT: The sfr3-1 mutation causes freezing-sensitivity in Arabidopsis thaliana. The mutated gene has been identified by positional cloning and is currently being characterised. The mutant appears normal when grown in the warm (no phenotype has been identified associated with such growth). However, following cold acclimation and subsequent freezing mutant plants are severely damaged whilst wild type plants are not. This suggests that sfr3 is deficient in the cold acclimation process. Micro-array analysis will enable the identification of any transcriptional changes during the cold acclimation process. This information will then be used, together with information obtained by gene characterisation, in order to more fully understand the nature of the sfr3 mutation. 8 samples were used in this experiment.
Project description:The sfr3-1 mutation causes freezing-sensitivity in Arabidopsis thaliana. The mutated gene has been identified by positional cloning and is currently being characterised. The mutant appears normal when grown in the warm (no phenotype has been identified associated with such growth). However, following cold acclimation and subsequent freezing mutant plants are severely damaged whilst wild type plants are not. This suggests that sfr3 is deficient in the cold acclimation process. Micro-array analysis will enable the identification of any transcriptional changes during the cold acclimation process. This information will then be used, together with information obtained by gene characterisation, in order to more fully understand the nature of the sfr3 mutation.
Project description:Knowledge about molecular mechanisms underlying cold and freezing stress responses in perennial ryegrass is scarce. The current study aims to study cold and freezing stress responses of perennial ryegrass genotypes with contrasting cold tolerances. A panel of 160 genotypes were screened for cold tolerances based on electrolyte leakage % measured after 24 hrs at 12 °C and 24 hrs at 14 °C. Among them, 4 genotypes (2 low EL% and 2 high EL%) were selected to study cold and freezing stress responses. Plants were sampled at 6 timepoints; control (T1), beginning of cold acclimation (T2), 2 weeks into cold acclimation (T3), end of cold cold acclimation (T4), -5°C (T5), -10 °C (T6) followed by RNA extraction and sequencing.
Project description:Brassinosteroids (BRs) are growth-promoting plant hormones that play a role in abiotic stress responses, but molecular modes that enable this activity remain largely unknown. Here we show that BRs participate in the regulation of freezing tolerance. BR signaling-defective mutants of Arabidopsis thaliana were hypersensitive to freezing before and after cold acclimation. The constitutive activation of BR signaling, in contrast, enhanced freezing resistance. Evidence is provided that the BR-controlled basic helix–loop–helix transcription factor CESTA (CES) can contribute to the constitutive expression of the C-REPEAT/DEHYDRATION-RESPONSIVE ELEMENT BINDING FACTOR (CBF) transcriptional regulators that control cold responsive (COR) gene expression. In addition, CBF-independent classes of BR-regulated COR genes are identified that are regulated in a BR- and CES-dependent manner during cold acclimation. A model is presented in which BRs govern different cold-responsive transcriptional cascades through the posttranslational modification of CES and redundantly acting factors. This contributes to the basal resistance against freezing stress, but also to the further improvement of this resistance through cold acclimation. We used microarray data to investigate the contribution of different pathways to cold tolerance of Arabidopsis thaliana .
Project description:During cold acclimation plants increase their freezing tolerance in response to low non-freezing temperatures. This is accompanied by many physiological, biochemical and molecular changes that have been extensively investigated. In addition, many cold acclimated plants become more freezing tolerant during exposure to mild, non-damaging sub-zero temperatures. There is hardly any information available about the molecular basis of this adaptation. However, Arabidopsis thaliana is among the species that acclimate to sub-zero temperatures. This makes it possible to use the molecular and genetic tools available in this species to identify components of sub-zero signal transduction and acclimation. Here, we have used microarrays and a qRT-PCR primer platform covering 1880 genes encoding transcription factors to monitor changes in gene expression in the accessions Columbia-0, Rschew and Tenela during the first three days of sub-zero acclimation at -3°C. The results indicate that gene expression during sub-zero acclimation follows a tighly controlled time-course. Especially AP2/EREBP and WRKY transcription factors may be important regulators of sub-zero acclimation, although the CBF signal transduction pathway seems to be less important during sub-zero than during cold acclimation. Globally, we estimate that approximately 5% of all Arabidopsis genes are regulated during sub-zero acclimation. Particularly photosynthesis-related genes were down-regulated and genes belonging to the functional classes of cell wall biosynthesis, hormone metabolism and RNA regulation of transcription were up-regulated. Collectively, these data provide the first global analysis of gene expression during sub-zero acclimation and allow the identification of candidate genes for forward and reverse genetic studies into the molecular mechanisms of sub-zero acclimation. We used whole genome microarrays to monitor changes in gene expression in the Arabidopsis thaliana accessions Columbia-0, Rschew and Tenela during three days of acclimation to sub-zero temperature at -3°C after cold acclimation
Project description:We conducted microarray analysis to study comprehensive changes of gene expression profile under long-term low-temperature (LT) treatment and to identify other LT-responsive genes related with cold acclimation in seedling leaves and crown tissues (shoots containing apical meristems) of a synthetic hexaploid wheat line. The microarray analysis revealed marked up-regulation of a number of Cor/Lea genes and fructan biosynthesis-related genes under the long-term LT treatment. For validation of the microarray data, we selected four synthetic wheat lines, which contained the A and B genomes from a tetraploid wheat cultivar Langdon and the diverse D genomes originating from the different Ae. tauschii accessions, with distinct levels of freezing tolerance after cold acclimation. Quantitative RT-PCR analyses showed that the transcription accumulated levels of the Cor/Lea, CBF, and fructan biosynthesis-related genes were higher in more freezing-tolerant lines than those in the sensitive lines. The fructan biosynthesis pathway would be associated with cold acclimation to develop wheat freezing tolerance and related with diversity of the freezing tolerance level in addition to the CBF-mediated Cor/Lea expression pathway.
Project description:Freezing causes physiological changes even in a hardy, cold-acclimated wild type. During recovery from freezing, gene expression will reflect the induction of damage-repair processes distinct from the damage-prevention associated with cold acclimation. This will be detected by observing the wild-type transcriptome at two time points during recovery from a freezing episode. The appropriate control is the unfrozen, cold-acclimated wild type. Experimenter name = Glenn Thorlby Experimenter phone = 01874 443770 Experimenter address = School of biological Sciences Experimenter address = Bourne Building Experimenter address = Royal Holloway Experimenter address = Egham Experimenter zip/postal_code = TW20 0EX Keywords: growth_condition_design;
Project description:The sfr6-1 mutant of Arabidopsis has been shown to be defective in freezing tolerance and fails to express a number of cold-regulated genes to normal wild type levels. The aim of this experiment was to test whether two other mutant alleles, sfr6-2 and sfr6-3 showed similar defects in cold-inducible gene expression. Two experiments were performed. In each, one sfr6 mutant was cold-treated alongside its corresponding wild type.
Project description:Intertidal zone organisms can experience transient freezing temperatures during winter low tides, but their extreme cold tolerance mechanisms are not known. Petrolisthes cinctipes is a temperate mid-high intertidal zone crab species that can experience wintertime habitat temperatures below the freezing point of seawater. We examined how cold tolerance changed during the initial phase of thermal acclimation to cold and warm temperatures, as well as the persistence of cold tolerance during long-term thermal acclimation. Thermal acclimation for as little as 6 hours at 8˚C enhanced crab tolerance during a 1h exposure to -2°C relative to crabs acclimated to 18˚C. Potential mechanisms for this enhanced tolerance were elucidated using cDNA microarrays to probe for differences in gene expression in cardiac tissue of warm and cold acclimated crabs during the first day of thermal acclimation. No changes in gene expression were detected until 12h of thermal acclimation. Genes strongly upregulated in warm acclimated crabs represented immune response and extracellular / intercellular processes, suggesting that warm acclimated crabs had a generalized stress response and may have been remodelling tissues or altering intercellular processes. Genes strongly upregulated in cold acclimated crabs included many that are involved in glucose production suggesting that cold acclimation involves increasing intracellular glucose as a cryoprotectant. Structural cytoskeletal proteins were also strongly represented among the genes upregulated in only cold acclimated crabs. There were no consistent changes in composition or the level of unsaturation of membrane phospholipid fatty acids with cold acclimation, which suggests that neither short- nor long-term changes in cold tolerance are mediated by changes in membrane fatty acid composition. Overall, our study demonstrates that initial changes in cold tolerance are likely not regulated by transcriptomic responses, but that gene expression-related changes in homeostasis begin within 12 hours – the length of a tidal cycle. all array data and raw images archived at the Porcelain Crab Array Database (http://array.sfsu.edu)
Project description:During cold acclimation plants increase their freezing tolerance in response to low non-freezing temperatures. This is accompanied by many physiological, biochemical and molecular changes that have been extensively investigated. In addition, many cold acclimated plants become more freezing tolerant during exposure to mild, non-damaging sub-zero temperatures. There is hardly any information available about the molecular basis of this adaptation. However, Arabidopsis thaliana is among the species that acclimate to sub-zero temperatures. This makes it possible to use the molecular and genetic tools available in this species to identify components of sub-zero signal transduction and acclimation. Here, we have used microarrays and a qRT-PCR primer platform covering 1880 genes encoding transcription factors to monitor changes in gene expression in the accessions Columbia-0, Rschew and Tenela during the first three days of sub-zero acclimation at -3°C. The results indicate that gene expression during sub-zero acclimation follows a tighly controlled time-course. Especially AP2/EREBP and WRKY transcription factors may be important regulators of sub-zero acclimation, although the CBF signal transduction pathway seems to be less important during sub-zero than during cold acclimation. Globally, we estimate that approximately 5% of all Arabidopsis genes are regulated during sub-zero acclimation. Particularly photosynthesis-related genes were down-regulated and genes belonging to the functional classes of cell wall biosynthesis, hormone metabolism and RNA regulation of transcription were up-regulated. Collectively, these data provide the first global analysis of gene expression during sub-zero acclimation and allow the identification of candidate genes for forward and reverse genetic studies into the molecular mechanisms of sub-zero acclimation. We used whole genome microarrays to monitor changes in gene expression in the Arabidopsis thaliana accessions Columbia-0, Rschew and Tenela during three days of acclimation to sub-zero temperature at -3°C after cold acclimation Plants from Arabidopsis thaliana accessions Columbia-0, Rschew and Tenela were cold acclimated at 4°C for two weeks. Detached leaves were then sub-zero acclimated at -3°C for 8 h, 1 d or 3 d at -3°C. Leaves of cold acclimated plants and sub-zero acclimated leaves were collected for RNA extraction and hybridization on Affymetrix ATH1 microarrays in order to explore temporal transcriptome changes during sub-zero acclimation. For each sample total RNA was isolated from a pool of three leaves from three different plants. The experiment was performed in three idenpendent biological replicates.
Project description:Freezing causes physiological changes even in a hardy, cold-acclimated wild type. During recovery from freezing, gene expression will reflect the induction of damage-repair processes distinct from the damage-prevention associated with cold acclimation. This will be detected by observing the wild-type transcriptome at two time points during recovery from a freezing episode. The appropriate control is the unfrozen, cold-acclimated wild type. Experimenter name = Glenn Thorlby; Experimenter phone = 01874 443770; Experimenter address = School of biological Sciences; Experimenter address = Bourne Building; Experimenter address = Royal Holloway; Experimenter address = Egham; Experimenter zip/postal_code = TW20 0EX Experiment Overall Design: 3 samples were used in this experiment