ABSTRACT: Identification of the changes in gene expression between the antler velvet and mesenchyme, pedicle skin and frontal skin tissues from adult male deers (Cervus elaphus). Hybridization data were analysed using MAS5, RMA, GCRMA and Dchip algorithms to maximize the chances of identifying gene expression changes. Comparison of 4 tissues with 3 biological replicates each. Samples were obtained from Velvet, Mesenchyme, Pedicle, and Frontal tissues of 3 adult males.
Project description:Identification of the changes in gene expression between the antler velvet and mesenchyme, pedicle skin and frontal skin tissues from adult male deers (Cervus elaphus). Hybridization data were analysed using MAS5, RMA, GCRMA and Dchip algorithms to maximize the chances of identifying gene expression changes.
Project description:The aim of this study is to determine differential gene expression on skin biopsies of experimentally BTV-infected hinds (Cervus elaphus) using serotypes 1 and 8 to understand the possible role that these genes play during BTV infection. Understanding the strategies used by this virus for their cellular uptake, and detection of differentially expressed transcripts in experimentally infected hosts, can provide identification of detailed information that might be used to prevent infection. Four seven-month-old red deer Cervus elaphus were kept in a P3 facility to be experimentally infected with Bluetongue virus, and 4 more red deer were kept as controls. Skin biopsies were taken at 14 days post-infection to determine gene expression in response to this virus.
Project description:The velvet antler is a unique model for cancer and regeneration research due to its periodic re-generation and rapid growth. Antler growth is mainly triggered by the growth center located in its tip, which consists of velvet skin, mesenchyme and cartilage. Among them, cartilage accounts for most of the growth center. We performed an integrative analysis of the antler cartilage tran-scriptome and proteome at different antler growth stages. RNA-seq results revealed 24,778 uni-genes, 19,243 known protein-coding genes, and 5,535 new predicted genes. Of these, 2,722 were detected with differential expression patterns among 30 d, 60 d, and 90 d libraries, and 488 dif-ferentially expressed genes (DEGs) were screened at 30 d vs. 60 d and 60 d vs. 90 d but not at 30 d vs. 90 d. Proteomic data identified 1,361 known proteins and 179 predicted novel proteins. Compar-ative analyses showed 382 differentially expressed proteins (DEPs), of which 16 had differential expression levels at 30 d vs. 60 d and 60 d vs. 90 d but not at 30 d vs. 90 d. An integrated analysis conducted for DEGs and DEPs showed that gene13546 and its coding protein protein13546 anno-tated in the Wnt signaling pathway may possess important bio-logical functions in rapid antler growth. This study provides in-depth characterization of candidate genes and proteins, providing further insights into the molecular mechanisms controlling antler development.
Project description:The aim of this study is to determine differential gene expression on skin biopsies of experimentally BTV-infected hinds (Cervus elaphus) using serotypes 1 and 8 to understand the possible role that these genes play during BTV infection. Understanding the strategies used by this virus for their cellular uptake, and detection of differentially expressed transcripts in experimentally infected hosts, can provide identification of detailed information that might be used to prevent infection.
Project description:We have previously described the reindeer antler velvet as a highly unique mammalian model of adult skin regeneration as wounds on backskin form a raised, contractile scar devoid of appendages or pigment, whereas identical wounds in antler velvet exhibit scar-less regeneration. To ask whether regenerative capacity is inherent to cells within the velvet (and not due to factors derived from the antler environment), we transplanted full thickness velvet skin grafts onto dorsal backskin. This scRNA-Seq sample profiles cells within the ectopic velvet graft to assess their molecular resemblance to regenerative velvet or non-regenerative dorsal backskin.
Project description:Rib bone growth in red deer stags - Abstract: In 'The Bone and Joint Decade' interest is focused on genetic factors causing bone disorders. Osteoporosis, attacking 10% of the population worldwide, is the most common metabolic bone disease, which is mimiced by several ovarectomised or genetically modified 'cascadeur' animal species, but none of them is able to remedy its pathologically porous bone tissue. Regeneration in skeletal elements is the curiosity of our newly investigated osteoporosis animal model, red deer (Cervus elaphus). The cyclic physiological osteoporosis in red deer stag is a consequence of the annual antler cycle. This phenomenon raises the possibility to explore new genes involved in regulating bone mineral density (BMD) and recovery of bone resorption on the basis of comparative genomics between deer and human. Here we compared the gene expression activities of osteoporotic and regenerating flying rib bone samples versus late autumn dwell control in red deer by heterologous microarray hybridization. Identified genes were tested on human femoral bone tissue from postmenopausal osteoporotic and non-osteoporotic patients. Expression data were evaluated by Principal Components Analysis and Discriminant Analysis. Keywords: Gene Expression experiment Approximately 2-3 g flying rib bone pieces in the entire cross section of bony rib were surgically removed from 3 anaesthetized [SBH-Ketamine (2.5 mg/kg live weight) combined with Xylazine (0.2 mg/kg live weight) i.m. injection] 6, 7 and 8 year old Cervus elaphus stags. (Cast antler pairs weighed 7-8 kg for each animal.) Removed rib pieces were extensively washed in PBS for eliminating blood and marrow contamination, than immediately frozen in liquid nitrogen. The time of tissue collections were (i) within the period of the active mineralization of antler, at the beginning of June when skeletal osteoporosis takes place, (ii) in the fitness improvement period with velvet shedding in late July, that is the 'regenerating time' and (iii) in the period of late autumn dwell at the end of November when in the skeleton the mineral mobilization and deposition are dynamically equilibrated (BMD is in steady state). Each comparison performed on Platforms GPL4052 and GPL5352.
Project description:Mammalian skin wounds heal by forming fibrotic scars. We report that reindeer antler velvet exhibits regenerative wound healing, whereas identical injury to back skin forms scar. This regenerative capacity was retained following ectopic transplantation of velvet to scar-forming sites. Single-cell mRNA/ATAC-Sequencing revealed that while uninjured velvet fibroblasts resembled human fetal fibroblasts, back skin fibroblasts were enriched in pro-inflammatory features resembling adult human fibroblasts. Injury elicited site-specific immune polarization; back skin fibroblasts amplified the immune response, whereas velvet fibroblasts adopted an immunosuppressive state leading to restrained myeloid maturation and hastened immune resolution ultimately enabling myofibroblast reversion to a regeneration-competent state. Finally, regeneration was blunted following application of back skin associated immunostimulatory signals or inhibition of pro-regenerative factors secreted exclusive to velvet fibroblasts. This study highlights a unique model to interrogate mechanisms underlying divergent healing outcomes and nominates both decoupling of stromal-immune crosstalk and reinforcement of pro-regenerative fibroblast programs to mitigate scar.