Specific kinesin expression profiles associated with taxane resistance in breast cancer
Ontology highlight
ABSTRACT: Purpose: Breast cancer is a genetically heterogenous disease with subtypes differing in prognosis and chemosensitivity. The basal-like breast cancer (BLBC) molecular subtype is associated with poorer outcomes, but is more responsive to taxane-based chemotherapy. We evaluated the role of kinesins, motor proteins interacting with microtubules, in influencing taxane resistance. Experimental Design: Kinesin (KIF) expression was studied in one local dataset comprising all taxane resistant breast cancers in relation to taxane resistance. Data in the NCI-60 cell line dataset (GSE5846) nd the MDACC dataset (GSE20194) is separately detailed. Results: In the local dataset, the kinesin KIF26B is overexpressed in taxane-resistant residual breast cancers post-chemotherapy. Conclusions: We show that kinesin overexpression correlates with taxane resistance in BLBC cell lines and tissue. Our results suggest a potential approach to overcoming taxane resistance through concurrent or sequential use of kinesin inhibitors, highlighting the ATP-binding domain as a drug development target. Kinesin (KIF) expression was studied in one local dataset comprising all taxane resistant breast cancers in relation to taxane resistance. Data in the NCI-60 cell line dataset (GSE5846) and the MDACC dataset (GSE20194) is separately detailed.
Project description:Purpose: Breast cancer is a genetically heterogenous disease with subtypes differing in prognosis and chemosensitivity. The basal-like breast cancer (BLBC) molecular subtype is associated with poorer outcomes, but is more responsive to taxane-based chemotherapy. We evaluated the role of kinesins, motor proteins interacting with microtubules, in influencing taxane resistance. Experimental Design: Kinesin (KIF) expression was studied in one local dataset comprising all taxane resistant breast cancers in relation to taxane resistance. Data in the NCI-60 cell line dataset (GSE5846) nd the MDACC dataset (GSE20194) is separately detailed. Results: In the local dataset, the kinesin KIF26B is overexpressed in taxane-resistant residual breast cancers post-chemotherapy. Conclusions: We show that kinesin overexpression correlates with taxane resistance in BLBC cell lines and tissue. Our results suggest a potential approach to overcoming taxane resistance through concurrent or sequential use of kinesin inhibitors, highlighting the ATP-binding domain as a drug development target.
Project description:BRCA1 mutation-carriers are predisposed to develop Basal-like breast cancer (BLBC), and p53 mutations are present in the majority of human BLBC cases, suggesting loss of these two tumor suppressors play key roles in development of BLBC. Recent studies suggest that the majority of human breast cancers, including BLBC, may originate from mammary epithelial cells (MECs) in the luminal lineage. However, how loss of p53 and BRCA1 contributes to development of BLBC from luminal MECs remains largely elusive. We developed a novel genetic targeting and lineage tracing approach based on intraductal injection of Cre-expressing adenovirus under the control of the pan-luminal Keratin 8 (K8) promoter (Ad-K8-Cre). We performed intraductal injection of Ad-K8-Cre to female mice carrying conditional knockout alleles of Brca1 and Trp53. The injected females developed mammary tumors within 12 months after injection. Microarray expression profiling of these tumors showed that they most closely resembled human BLBC.
Project description:BRCA1 mutation-carriers are predisposed to develop Basal-like breast cancer (BLBC), and p53 mutations are present in the majority of human BLBC cases, suggesting loss of these two tumor suppressors play key roles in development of BLBC. Recent studies suggest that the majority of human breast cancers, including BLBC, may originate from mammary epithelial cells (MECs) in the luminal lineage. However, how loss of p53 and BRCA1 contributes to development of BLBC from luminal MECs remains largely elusive. We developed a novel genetic targeting and lineage tracing approach based on intraductal injection of Cre-expressing adenovirus under the control of the pan-luminal Keratin 8 (K8) promoter (Ad-K8-Cre). We performed intraductal injection of Ad-K8-Cre to female mice carrying conditional knockout alleles of Brca1 (Brca1L) and Trp53 (Trp53L). The injected females developed mammary tumors similar to human BLBC within 12 months after injection. Here we characterized MECs targeted by Ad-K8-Cre one month after the intraductal injection.
Project description:BRCA1 mutation-carriers are predisposed to develop Basal-like breast cancer (BLBC), and p53 mutations are present in the majority of human BLBC cases, suggesting loss of these two tumor suppressors play key roles in development of BLBC. Recent studies suggest that the majority of human breast cancers, including BLBC, may originate from mammary epithelial cells (MECs) in the luminal lineage. However, how loss of p53 and BRCA1 contributes to development of BLBC from luminal MECs remains largely elusive. We developed a novel genetic targeting and lineage tracing approach based on intraductal injection of Cre-expressing adenovirus under the control of the pan-luminal Keratin 8 (K8) promoter (Ad-K8-Cre). We performed intraductal injection of Ad-K8-Cre to female mice carrying conditional knockout alleles of Brca1 (Brca1L) and Trp53 (Trp53L). The injected females developed mammary tumors similar to human BLBC within 12 months after injection. Here we characterized MECs targeted by Ad-K8-Cre at different time points after the intraductal injection, as well as mammary tumors developed in this model, by single cell expression analysis.
Project description:Background: Basal-like breast cancer (BLBC) is a rare aggressive subtype that is less likely to be detected through mammographic screening. Identification of circulating markers associated with BLBC could have promise in detection and management of this deadly disease. Methods: Using samples from the Polish Breast Cancer study, a high-quality population-based case-control study of breast cancer, we screened 10,000 antigens on protein arrays using 45 BLBC patients and 45 controls, and identified 748 promising plasma autoantibodies (AAbs) associated with BLBC. ELISA assays of promising markers were performed on a total of 145 BLBC cases and 145 age-matched controls. Sensitivities at 98% specificity were calculated and a BLBC classifier was constructed. Results: We identified a 13-AAbs (CTAG1B, CTAG2, TP53, RNF216, PPHLN1, PIP4K2C, ZBTB16, TAS2R8, WBP2NL, DOK2, PSRC1, MN1, TRIM21) that distinguished BLBC from controls with 33% sensitivity and 98% specificity. We also discovered a strong association of TP53 AAb with its protein expression (p=0.009) in BLBC patients. Conclusions: These AAbs warrant further investigation in clinical studies to determine their value for further understanding the biology of BLBC and possible detection. The immunoreactivity was compared between 45 BLBC cases and 45 controls against 10,000 human proteins that printed on microscopic slides
Project description:Background: Basal-like breast cancer (BLBC) is a rare aggressive subtype that is less likely to be detected through mammographic screening. Identification of circulating markers associated with BLBC could have promise in detection and management of this deadly disease. Methods: Using samples from the Polish Breast Cancer study, a high-quality population-based case-control study of breast cancer, we screened 10,000 antigens on protein arrays using 45 BLBC patients and 45 controls, and identified 748 promising plasma autoantibodies (AAbs) associated with BLBC. ELISA assays of promising markers were performed on a total of 145 BLBC cases and 145 age-matched controls. Sensitivities at 98% specificity were calculated and a BLBC classifier was constructed. Results: We identified a 13-AAbs (CTAG1B, CTAG2, TP53, RNF216, PPHLN1, PIP4K2C, ZBTB16, TAS2R8, WBP2NL, DOK2, PSRC1, MN1, TRIM21) that distinguished BLBC from controls with 33% sensitivity and 98% specificity. We also discovered a strong association of TP53 AAb with its protein expression (p=0.009) in BLBC patients. Conclusions: These AAbs warrant further investigation in clinical studies to determine their value for further understanding the biology of BLBC and possible detection. The immunoreactivity was compared between 45 BLBC cases and 45 controls against 10,000 human proteins that printed on microscopic slides
Project description:Background: Basal-like breast cancer (BLBC) is a rare aggressive subtype that is less likely to be detected through mammographic screening. Identification of circulating markers associated with BLBC could have promise in detection and management of this deadly disease. Methods: Using samples from the Polish Breast Cancer study, a high-quality population-based case-control study of breast cancer, we screened 10,000 antigens on protein arrays using 45 BLBC patients and 45 controls, and identified 748 promising plasma autoantibodies (AAbs) associated with BLBC. ELISA assays of promising markers were performed on a total of 145 BLBC cases and 145 age-matched controls. Sensitivities at 98% specificity were calculated and a BLBC classifier was constructed. Results: We identified a 13-AAbs (CTAG1B, CTAG2, TP53, RNF216, PPHLN1, PIP4K2C, ZBTB16, TAS2R8, WBP2NL, DOK2, PSRC1, MN1, TRIM21) that distinguished BLBC from controls with 33% sensitivity and 98% specificity. We also discovered a strong association of TP53 AAb with its protein expression (p=0.009) in BLBC patients. Conclusions: These AAbs warrant further investigation in clinical studies to determine their value for further understanding the biology of BLBC and possible detection. The immunoreactivity was compared between 45 BLBC cases and 45 controls against 10,000 human proteins that printed on microscopic slides
Project description:Background: Basal-like breast cancer (BLBC) is a rare aggressive subtype that is less likely to be detected through mammographic screening. Identification of circulating markers associated with BLBC could have promise in detection and management of this deadly disease. Methods: Using samples from the Polish Breast Cancer study, a high-quality population-based case-control study of breast cancer, we screened 10,000 antigens on protein arrays using 45 BLBC patients and 45 controls, and identified 748 promising plasma autoantibodies (AAbs) associated with BLBC. ELISA assays of promising markers were performed on a total of 145 BLBC cases and 145 age-matched controls. Sensitivities at 98% specificity were calculated and a BLBC classifier was constructed. Results: We identified a 13-AAbs (CTAG1B, CTAG2, TP53, RNF216, PPHLN1, PIP4K2C, ZBTB16, TAS2R8, WBP2NL, DOK2, PSRC1, MN1, TRIM21) that distinguished BLBC from controls with 33% sensitivity and 98% specificity. We also discovered a strong association of TP53 AAb with its protein expression (p=0.009) in BLBC patients. Conclusions: These AAbs warrant further investigation in clinical studies to determine their value for further understanding the biology of BLBC and possible detection. The immunoreactivity was compared between 45 BLBC cases and 45 controls against 10,000 human proteins that printed on microscopic slides
Project description:Background: Basal-like breast cancer (BLBC) is a rare aggressive subtype that is less likely to be detected through mammographic screening. Identification of circulating markers associated with BLBC could have promise in detection and management of this deadly disease. Methods: Using samples from the Polish Breast Cancer study, a high-quality population-based case-control study of breast cancer, we screened 10,000 antigens on protein arrays using 45 BLBC patients and 45 controls, and identified 748 promising plasma autoantibodies (AAbs) associated with BLBC. ELISA assays of promising markers were performed on a total of 145 BLBC cases and 145 age-matched controls. Sensitivities at 98% specificity were calculated and a BLBC classifier was constructed. Results: We identified a 13-AAbs (CTAG1B, CTAG2, TP53, RNF216, PPHLN1, PIP4K2C, ZBTB16, TAS2R8, WBP2NL, DOK2, PSRC1, MN1, TRIM21) that distinguished BLBC from controls with 33% sensitivity and 98% specificity. We also discovered a strong association of TP53 AAb with its protein expression (p=0.009) in BLBC patients. Conclusions: These AAbs warrant further investigation in clinical studies to determine their value for further understanding the biology of BLBC and possible detection. The immunoreactivity was compared between 45 BLBC cases and 45 controls against 10,000 human proteins that printed on microscopic slides