Metabolomics,Unknown,Transcriptomics,Genomics,Proteomics

Dataset Information

0

Global changes in Staphylococcus aureus gene expression in human blood provide insight into mechanisms of immune evasion and virulence


ABSTRACT: Staphylococcus aureus is a leading cause of bloodstream infections worldwide. In the United States, many of these infections are caused by a strain known as USA300. Although progress has been made, our understanding of the S. aureus molecules that promote bacteremia and survival in human blood is incomplete. To that end, we analyzed the USA300 transcriptome during culture in human blood, human serum, and trypticase soy broth (TSB), a standard laboratory culture media. Notably, genes encoding several cytolytic toxins were up-regulated in human blood over time, and hlgA, hlgB, and hlgC (encoding gamma-hemolysin subunits HlgA, HlgB, and HlgC) were among the most highly up-regulated genes at all time points. Culture supernatants derived from a USA300 isogenic hlgABC-deletion strain (LAC?hlgABC) had significantly reduced capacity to form pores in human neutrophils and ultimately cause neutrophil lysis. Compared with the wild-type USA300 strain (LAC), LAC?hlgABC had modestly reduced ability to cause mortality in a mouse bacteremia model. On the other hand, wild-type and LAC?hlgABC strains caused virtually identical disease in a mouse skin infection model, and bacterial survival and neutrophil lysis after phagocytosis in vitro was similar between these strains. Comparison of the cytolytic capacity of culture supernatants from wild-type and isogenic deletion strains lacking hlgABC, lukS/F-PV (encoding PVL), and/or lukDE revealed significant functional redundancy among two-component leukotoxins in vitro. These findings may explain in part the apparent limited contribution of any single two-component leukotoxin to USA300 immune evasion and virulence. S. aureus strain USA300 transcriptome during culture in human blood, human serum, and trypticase soy broth (TSB): time course.

ORGANISM(S): Staphylococcus aureus

SUBMITTER: Dan Sturdevant 

PROVIDER: E-GEOD-25454 | biostudies-arrayexpress |

REPOSITORIES: biostudies-arrayexpress

altmetric image

Publications


Staphylococcus aureus is a leading cause of bloodstream infections worldwide. In the United States, many of these infections are caused by a strain known as USA300. Although progress has been made, our understanding of the S. aureus molecules that promote survival in human blood and ultimately facilitate metastases is incomplete. To that end, we analyzed the USA300 transcriptome during culture in human blood, human serum, and trypticase soy broth (TSB), a standard laboratory culture media. Notab  ...[more]

Similar Datasets

2011-08-26 | GSE25454 | GEO
2014-03-19 | E-GEOD-55980 | biostudies-arrayexpress
2024-01-18 | E-MTAB-12581 | biostudies-arrayexpress
2013-12-01 | E-GEOD-50675 | biostudies-arrayexpress
2014-08-01 | E-GEOD-57340 | biostudies-arrayexpress
2017-01-26 | GSE77301 | GEO
2016-03-29 | GSE74197 | GEO
2022-09-06 | GSE184082 | GEO
2023-09-30 | E-MTAB-13313 | biostudies-arrayexpress
2013-05-20 | E-GEOD-43759 | biostudies-arrayexpress