Metabolomics,Unknown,Transcriptomics,Genomics,Proteomics

Dataset Information

0

Time-resolved heat stress response of Saccharomyces cerevisiae


ABSTRACT: Whole-genome transcriptional response of S. cerevisiae to an increase in temperature from 28M-BM-0C to 41M-BM-0C under well-controlled conditions. Two subsequent phases of response with very different dynamics: a short term response for the first hour after the temperature increase and a long term one for up to six hours. The initial response was strongest with almost half of the ORFs being induced or repressed to a statistically significant level (here 1.5 fold). The data was grouped based on the function of the encoded proteins. Analysis showed that the cells overexpressed genes involved in energy conservation processes. Genes encoding molecular chaperones were overexpressed as well, presumably to counteract the effect of the temperature increase on protein denaturation. Furthermore, genes encoding parts of the translation and transcription systems were repressed temporarily, in line with the observed lag in growth. More detailed analysis of certain small groups of genes involved in energy metabolism supported the notion that, although the expression level of genes represent a part of the stress response, they cannot be directly linked to the level of activity of their products. Samples were taken from three replicate control cultures at 28M-BM-0C at three timepoints and from three replicate stressed cultures at six timepoints

ORGANISM(S): Saccharomyces cerevisiae

SUBMITTER: Femke Mensonides 

PROVIDER: E-GEOD-25503 | biostudies-arrayexpress |

REPOSITORIES: biostudies-arrayexpress

Similar Datasets

2014-01-15 | E-GEOD-44432 | biostudies-arrayexpress
2014-12-23 | E-GEOD-58988 | biostudies-arrayexpress
2011-05-20 | E-MEXP-2725 | biostudies-arrayexpress
2020-03-31 | PXD016482 | Pride
2011-02-01 | E-GEOD-24175 | biostudies-arrayexpress
2012-07-05 | E-GEOD-34227 | biostudies-arrayexpress
2014-10-07 | E-GEOD-56735 | biostudies-arrayexpress
2011-09-01 | E-MEXP-3333 | biostudies-arrayexpress
2014-06-14 | E-GEOD-58454 | biostudies-arrayexpress
2014-02-24 | E-GEOD-51465 | biostudies-arrayexpress