Gene expression analysis at the intersection of ploidy and hybridity in maize.
Ontology highlight
ABSTRACT: Heterosis and polyploidy are two important aspects of plant evolution. To examine these issues, we conducted a global gene expression study of a maize ploidy series as well as a set of tetraploid inbred and hybrid lines. This gene expression analysis complements an earlier phenotypic study of these same materials. We find that ploidy change affects a large fraction of the genome, albeit at low levels; gene expression changes rarely exceed 2-fold and are typically not statistically significant. The most common gene expression profile we detected is greater than linear increase from monoploid to diploid, and reductions from diploid to triploid and from triploid to tetraploid, a trend that mirrors plant stature. When examining heterosis in tetraploid maize lines, we found a large fraction of the genome impacted but the majority of changes were not statistically significant at 2-fold or less. Non-additive expression was common in the hybrids, and the extent of non-additivity increased both in number and magnitude from duplex to quadruplex hybrids. Overall, we find that gene expression trends mirror observations from the phenotypic studies; however, obvious mechanistic connections remain unknown. We examined gene expression in a ploidy series (1n to 4n) of the maize line B73 and in a variety of hybrid tetraploid lines using a complex loop design. Pooled RNA samples from 10 plants were used (2 independent RNA isolations/sample), and all comparisons were made using replicate dye swaps (16 slide sets/comparison). For the ploidy analysis, all expression changes were computed relative to the diploid as well as between 2n + 3n and 3n + 4n. For the expression analysis of hybrids, hybrid expression levels were compared to the parental expression levels as well as to mid-parent levels.
Project description:Microarray analysis of gene expression patterns in immature ear, seedling, and embryo tissues from the maize inbred lines B73 and Mo17 identified numerous genes with variable expression. Some genes had detectable expression in only one of the two inbreds; most of these genes were detected in the genomic DNA of both inbreds, indicating that the expression differences are likely caused by differential regulation rather than by differences in gene content. Gene expression was also monitored in the reciprocal F1 hybrids B73xMo17 and Mo17xB73. The reciprocal F1 hybrid lines did not display parental effects on gene expression levels. Approximately 80% of the differentially expressed genes displayed additive expression patterns in the hybrids relative to the inbred parents. The approximately 20% of genes that display nonadditive expression patterns tend to be expressed at levels within the parental range, with minimal evidence for novel expression levels greater than the high parent or less than the low parent. Analysis of allele-specific expression patterns in the hybrid suggested that intraspecific variation in gene expression levels is largely attributable to cis-regulatory variation in maize. Collectively, our data suggest that allelic cis-regulatory variation between B73 and Mo17 dictates maintenance of inbred allelic expression levels in the F1 hybrid, resulting in additive expression patterns. Experiment Overall Design: Affymetrix expression profiling was used to study gene expression in aerial tissue from 11-day seedlings of maize. Three biological replicates were performed for four different genotypes; B73, Mo17, B73xMo17 and Mo17xB73.
Project description:The complexity of the maize (Zea mays) genome makes it an ideal system for the study of both genetics and epigenetics. Here, we generated the integrated maps of transcriptomes and epigenomes of shoots and roots of two maize inbred lines and their reciprocal hybrids, and globally surveyed the epigenetic variations and their relationships with transcriptional divergence between different tissues and different genotypes. We observed that whereas histone modifications vary both between tissues and between genotypes, DNA methylation patterns are more distinguishable between genotypes than between tissues. Histone modifications were associated with transcriptomic divergence between tissues and between hybrids and parents. Further, we show that genes up-regulated in both shoots and roots of hybrids were significantly enriched in the nucleosome assembly pathway. Interestingly, 22- and 24-nt siRNAs were shown to be derived from distinct transposable elements (TEs), and for different TEs in both shoots and roots, the differences in siRNA activity between hybrids and patents were primarily driven by different siRNA species. Together, our results suggest that despite of the variations in specific genes or genomic loci, similar mechanisms may account for the genome-wide epigenetic regulation of gene activity and transposon stability in different tissues of maize hybrids. Genome-wide integrated maps of mRNA and small RNA (sRNA) transcriptomes, DNA methylomes and genome-wide distribution of three representative histone modifications (H3K4me3, H3K9ac and H3K36me3) in the shoots and roots of 14 day old seedlings of two maize inbred lines (B73 and Mo17) and their reciprocal hybrids (B73 x Mo17 and Mo17 x B73).
Project description:Heterosis and polyploidy are two important aspects of plant evolution. To examine these issues, we conducted a global gene expression study of a maize ploidy series as well as a set of tetraploid inbred and hybrid lines. This gene expression analysis complements an earlier phenotypic study of these same materials. We find that ploidy change affects a large fraction of the genome, albeit at low levels; gene expression changes rarely exceed 2-fold and are typically not statistically significant. The most common gene expression profile we detected is greater than linear increase from monoploid to diploid, and reductions from diploid to triploid and from triploid to tetraploid, a trend that mirrors plant stature. When examining heterosis in tetraploid maize lines, we found a large fraction of the genome impacted but the majority of changes were not statistically significant at 2-fold or less. Non-additive expression was common in the hybrids, and the extent of non-additivity increased both in number and magnitude from duplex to quadruplex hybrids. Overall, we find that gene expression trends mirror observations from the phenotypic studies; however, obvious mechanistic connections remain unknown.
Project description:While most eukaryotic cells are diploid, with two chromosome sets, variances in ploidy are common. Despite the relative prevalence of ploidy changes and their relevance for pathology and evolution, a complete picture of consequences of altered ploidy is missing. We analyzed transcriptome and proteome changes in budding yeast Saccharomyces cerevisiae from haploid to tetraploid and found that the mRNA and protein abundance increases linearly with ploidy, but does not double with doubling the DNA content. Besides this linear increase, we found that pathways related to mitochondria and to cytoplasmic ribosomes and translation are differentially regulated. Indeed, with increasing ploidy the cells reduce mitochondrial content and this effect can be rescued by antioxidants. Moreover, cells of higher ploidy reduce their ribosome content while maintaining constant translational output. We show that this is an active process regulated via the Tor1 and Sch9 kinases and a transcriptional corepressor of rDNA transcription, Tup1. Similarly, human tetraploid cells downregulate their ribosome content via Tle1, a Tup1 homolog, demonstrating that the proteome remodeling is a conserved response to increased ploidy.
Project description:Microarray analysis of gene expression patterns in immature ear, seedling, and embryo tissues from the maize inbred lines B73 and Mo17 identified numerous genes with variable expression. Some genes had detectable expression in only one of the two inbreds; most of these genes were detected in the genomic DNA of both inbreds, indicating that the expression differences are likely caused by differential regulation rather than by differences in gene content. Gene expression was also monitored in the reciprocal F1 hybrids B73xMo17 and Mo17xB73. The reciprocal F1 hybrid lines did not display parental effects on gene expression levels. Approximately 80% of the differentially expressed genes displayed additive expression patterns in the hybrids relative to the inbred parents. The approximately 20% of genes that display nonadditive expression patterns tend to be expressed at levels within the parental range, with minimal evidence for novel expression levels greater than the high parent or less than the low parent. Analysis of allele-specific expression patterns in the hybrid suggested that intraspecific variation in gene expression levels is largely attributable to cis-regulatory variation in maize. Collectively, our data suggest that allelic cis-regulatory variation between B73 and Mo17 dictates maintenance of inbred allelic expression levels in the F1 hybrid, resulting in additive expression patterns. Experiment Overall Design: Affymetrix expression profiling was used to study gene expression in 19 day after pollination embryo tissue of maize. Three biological replicates were performed for four different genotypes; B73, Mo17, B73xMo17 and Mo17xB73.
Project description:The nuclear content of the plant endosperm is the result of the contribution two maternal genomes and a single paternal genome. This 2:1 dosage relationship provides a unique system for studying the additivity of gene expression levels in reciprocal hybrids. A combination of microarray profiling and allele-specific expression analysis was performed using RNA isolated from endosperm tissues of maize inbred lines B73 and Mo17 and their reciprocal hybrids at two developmental stages, 13 and 19 days after pollination. By assessing the relative levels of expression in the reciprocal hybrids it was possible to determine the prevalence of additive and non-additive expression patterns. While the majority of differentially expressed genes displayed additive expression patterns in the endosperm, approximately 10% of the genes displayed non-additive expression patterns including maternal-like, paternal-like, dominant high-parent, dominant low-parent and expression patterns outside the range of the inbreds. The frequency of hybrid expression patterns outside of the parental range in maize endosperm tissue is much higher than that observed for vegetative tissues. For a set of 90 genes allele-specific expression assays were employed to monitor allelic bias and regulatory variation. Eight of these genes exhibited evidence for maternally or paternally biased expression at multiple stages of endosperm development and are potential examples of differential imprinting. Collectively, our data indicate that parental effects on gene expression are much stronger in endosperm than in vegetative tissues, and that endosperm imprinting may be far more common than previously estimated. Experiment Overall Design: Affymetrix microarrays were used to perform expression profiling on 13 day after pollination endosperm tissue of four different genotypes; B73; Mo17, B73xMo17 and Mo17xB73. There are three biological replicates for each of the tissues. Each biological sample represents a pool containing 5 endosperms each, from 6 different ears.
Project description:Microarray analysis of gene expression patterns in immature ear, seedling, and embryo tissues from the maize inbred lines B73 and Mo17 identified numerous genes with variable expression. Some genes had detectable expression in only one of the two inbreds; most of these genes were detected in the genomic DNA of both inbreds, indicating that the expression differences are likely caused by differential regulation rather than by differences in gene content. Gene expression was also monitored in the reciprocal F1 hybrids B73xMo17 and Mo17xB73. The reciprocal F1 hybrid lines did not display parental effects on gene expression levels. Approximately 80% of the differentially expressed genes displayed additive expression patterns in the hybrids relative to the inbred parents. The approximately 20% of genes that display nonadditive expression patterns tend to be expressed at levels within the parental range, with minimal evidence for novel expression levels greater than the high parent or less than the low parent. Analysis of allele-specific expression patterns in the hybrid suggested that intraspecific variation in gene expression levels is largely attributable to cis-regulatory variation in maize. Collectively, our data suggest that allelic cis-regulatory variation between B73 and Mo17 dictates maintenance of inbred allelic expression levels in the F1 hybrid, resulting in additive expression patterns. Experiment Overall Design: Affymetrix expression profiling was used to study gene expression in immature ear tissue from maize. Three biological replicates were performed for four different genotypes; B73, Mo17, B73xMo17 and Mo17xB73.
Project description:Whereas most eukaryotic cells are diploid, carrying two chromosome sets, variances in ploidy are common. Despite the relative prevalence of ploidy changes and their relevance for pathology and evolution, the consequences of altered ploidy for cellular gene expression remain poorly understood. We quantified changes in the transcriptome and proteome of the yeast Saccharomyces cerevisiae with different ploidy, from the haploid to the tetraploid state. We found that the abundance of proteins increases with ploidy, but does not scale proportionally with increasing DNA content, suggesting a compensatory, cellular response to increases in ploidy. We further found that pathways related to cytoplasmic ribosomes and translation are differentially regulated. With increasing ploidy the cells reduced the rRNA and ribosomal protein abundance, although they maintained a constant translational output. These adaptations stem from an active process that involves the kinases Tor1 and Sch9 and the transcriptional corepressor of rDNA transcription, Tup1. Consistent with our results in yeast, human tetraploid cells show reduced mTORC1 activity and downregulated their ribosome content via the Tup1 homolog Tle1, demonstrating that the proteome remodeling pathway discovered here constitutes a conserved response pathway to increased ploidy.
Project description:The nuclear content of the plant endosperm is the result of the contribution two maternal genomes and a single paternal genome. This 2:1 dosage relationship provides a unique system for studying the additivity of gene expression levels in reciprocal hybrids. A combination of microarray profiling and allele-specific expression analysis was performed using RNA isolated from endosperm tissues of maize inbred lines B73 and Mo17 and their reciprocal hybrids at two developmental stages, 13 and 19 days after pollination. By assessing the relative levels of expression in the reciprocal hybrids it was possible to determine the prevalence of additive and non-additive expression patterns. While the majority of differentially expressed genes displayed additive expression patterns in the endosperm, approximately 10% of the genes displayed non-additive expression patterns including maternal-like, paternal-like, dominant high-parent, dominant low-parent and expression patterns outside the range of the inbreds. The frequency of hybrid expression patterns outside of the parental range in maize endosperm tissue is much higher than that observed for vegetative tissues. For a set of 90 genes allele-specific expression assays were employed to monitor allelic bias and regulatory variation. Eight of these genes exhibited evidence for maternally or paternally biased expression at multiple stages of endosperm development and are potential examples of differential imprinting. Collectively, our data indicate that parental effects on gene expression are much stronger in endosperm than in vegetative tissues, and that endosperm imprinting may be far more common than previously estimated. Experiment Overall Design: Gene expression levels were profiled in 19 day after pollination endosperm tissue from four maize genotypes; B73, Mo17, Mo17xB73 and B73xMo17.