Genomic Signatures of Metastasis in Prostate Cancer
Ontology highlight
ABSTRACT: Background: Metastases result in 90% of all cancer deaths. Prostate cancer primary tumors evolve to become metastatic through selective alterations, such as amplification and deletion of genomic DNA. Methods: Genomic DNA copy number alterations were used to develop a gene signature that measured the metastatic potential of a prostate cancer primary tumor. We studied the genomic landscape of these alterations in 294 primary tumors and 49 metastases from 5 independent cohorts. Receiver-operating characteristic cross-validation and Kaplan-Meier survival analysis were performed to assess the accuracy of our predictive model. The signature was measured in a panel of 337 cancer cell lines from 29 different tissue origins. Results: We identified 399 copy number alterations around genes that were over-represented in metastases and predictive of whether a primary tumor will metastasize. Cross-validation analysis resulted in a predictive accuracy of 80.5% and log rank analysis of the metastatic potential score was significantly related to the endpoint of metastasis-free survival (p=0.014). The metastatic signature was observed in cell lines originating from lung, breast, colon, thyroid, rectum, pancreas and melanoma. The signature was comprised in part of genes of known or putative metastatic role — 8 solute carrier genes, 6 Cadherin family genes and 5 potassium channel genes — that function in metabolism, cell-to-cell adhesion and escape from anoikis/apoptosis. Conclusions: Somatic Copy number alterations are an independent predictor of metastatic potential. The data indicate a prognostic utility for using primary tumor genomics to assist in clinical decision making and developing therapeutics for prostate and likely other cancers. genomic DNA from 29 prostate cancer tumors with matched normals run on Affymetrix 6.0 SNP arrays.
Project description:Background: Metastases result in 90% of all cancer deaths. Prostate cancer primary tumors evolve to become metastatic through selective alterations, such as amplification and deletion of genomic DNA. Methods: Genomic DNA copy number alterations were used to develop a gene signature that measured the metastatic potential of a prostate cancer primary tumor. We studied the genomic landscape of these alterations in 294 primary tumors and 49 metastases from 5 independent cohorts. Receiver-operating characteristic cross-validation and Kaplan-Meier survival analysis were performed to assess the accuracy of our predictive model. The signature was measured in a panel of 337 cancer cell lines from 29 different tissue origins. Results: We identified 399 copy number alterations around genes that were over-represented in metastases and predictive of whether a primary tumor will metastasize. Cross-validation analysis resulted in a predictive accuracy of 80.5% and log rank analysis of the metastatic potential score was significantly related to the endpoint of metastasis-free survival (p=0.014). The metastatic signature was observed in cell lines originating from lung, breast, colon, thyroid, rectum, pancreas and melanoma. The signature was comprised in part of genes of known or putative metastatic role — 8 solute carrier genes, 6 Cadherin family genes and 5 potassium channel genes — that function in metabolism, cell-to-cell adhesion and escape from anoikis/apoptosis. Conclusions: Somatic Copy number alterations are an independent predictor of metastatic potential. The data indicate a prognostic utility for using primary tumor genomics to assist in clinical decision making and developing therapeutics for prostate and likely other cancers.
Project description:Many studies have shown that primary prostate cancers are multifocal1-3, and are composed of multiple genetically distinct cancer cell clones4-6. Whether or not multiclonal primary prostate cancers typically give rise to multiclonal or monoclonal prostate cancer metastases is largely unknown, although studies at single chromosomal loci are consistent with the latter. Here we show through a high-resolution genome-wide SNP and copy number survey that most if not all metastatic prostate cancers have monoclonal origins and maintain a unique signature copy number pattern of the parent cancer cell while also accumulating a variable number of separate subclonally sustained changes. We find no relationship between anatomic site of metastasis and genomic copy number change pattern. Taken together with past animal and cytogenetic studies of metastasis7, and recent single-locus genetic data in prostate and other metastatic cancers8-10, it appears that despite common genomic heterogeneity in primary cancers, most metastatic cancers arise from a single precursor cancer cell. Methodologically, this study establishes that genomic archeology of multiple anatomically separate metastatic cancers in individuals can be used to define the salient genomic features of a parent cancer clone of proven lethal metastatic phenotype.
Project description:This is a genomic analysis of breast cancer metastasis using array based CGH and is part of a large study investigating the patterns and evolution of metastases from breast cancer using autopsy material accumulated over the last 50 years from a single institution. The samples used in the genomic profiling comprise the primary breast tumour and multiple matched metastases from each patient. The data demonstrate both the clonal nature of metastatic progression and the role of clonal evolution during progression. This study comprises six patients who died of metastatic breast cancer. For some patients the breast primary tumour and lymph node metastasis was obtained from previous surgical excision, otherwise material was obtained from a resulting autopsy. Each patient set of samples involves the primary breast tumour and multiple metastases, including from lung, liver, lymph node, adrenal gland, brain etc. DNA was extracted from formalin fixed paraffin embedded (FFPE) tissue blocks and analysed for DNA copy number alterations using an Agilent aCGH platform.
Project description:Uveal melanoma (UM) is a rare form of melanoma with a genetics and immunology that is different from skin melanoma. Previous studies have identified genetic driver events of early stage disease when the tumor is confined to the eye. In this study, we have characterized genomic events in UM metastases using whole-genome and RNA sequencing from thirty-two and twenty-eight patients, respectively, and profiled individual tumor infiltrating lymphocytes in a number of the metastases. We find that 91% of the patients have metastases carrying inactivating events in the tumor suppressor BAP1 and this coincided with somatic alterations in GNAQ, GNA11, CYSLTR2, PLCB4, SF3B1 and/or CDKN2A. Mutational signature analysis revealed a rare subset of tumors with prominent signs of UV damage, associated with outlier mutational burden. We study copy number variations (CNV) and find overrepresented events, some of which were not altered in matched primary eye tumors. A focused siRNA screen identified functionally significant genes of some of the segments recurrently gained. We reintroduced a functional copy of BAP1 into a patient-derived BAP1 deficient tumor cell line and found broad transcriptomic changes of genes associated with subtype distinction and prognosis in primary UM. Lastly, our analysis of the immune microenvironments of metastases revealed a presence of tumor-reactive T cells. However, a large fraction expressed the immune checkpoint receptors such as TIM-3, TIGIT and LAG3. These results provide an updated view of genomic events represented in metastatic UM and immune interactions in advanced lesions.
Project description:We performed whole exome sequencing and copy number analysis for 15 triplets, each comprising normal colorectal tissue, primary colorectal carcinoma, and its synchronous matched liver metastasis. We analyzed the similarities and differences between primary colorectal carcinoma and matched liver metastases in regards to somatic mutations and somatic copy number alterationss (SCNAs). The genomic profiling demonstrated mutations in APC(73%), KRAS (33%), ARID1A and PIK3CA (6.7%) genes between primary colorectal and metastatic liver tumors. TP53 mutation was observed in 47% of the primary samples and 67% in liver metastatic samples. The grouped pairs, in hierarchical clustering showed similar SCNA patterns, in contrast to the ungrouped pairs. Many mutations (including those of known key cancer driver genes) were shared in the grouped pairs. The ungrouped pairs exhibited distinct mutation patterns with no shared mutations in key driver genes. Four ungrouped liver metastasis samples had mutations in DNA mismatch repair genes along with hypermutations and a substantial number of copy number of alterations. Genomically, colorectal and metastatic liver tumors were very similar. However, in a subgroup of patients, there were genetic variations in liver metastases in the loss of DNA mismatch repair genes. Copy number analysis of Affymetrix CytoScanHD arrays was performed for 15 primary colorectal carcinoma and 15 samples of their matched liver metastases. 15 normal samples prepared from each of the patient was used as the reference for the study. Nexus Copy number 6.1 software was used for somatic copy number alteration analysis.
Project description:Background & Aims: The metastatic process is complex and remains a major obstacle in the management of colorectal cancer (CRC). To gain a better insight into the biologic events driving the metastatic process we investigated genomic aberrations in a large cohort of matched CRC primaries and distant metastases from various sites. Methods: In total, 62 primary colorectal cancers, 62 matched normal specimens, and 68 matched metastases (from liver, lung, ovary, omentum, and distant lymph nodes) were analyzed by high resolution array comparative genomic hybridization (array CGH) for DNA copy number changes. Findings were validated using a publicly available dataset consisting of 21 primary tumors and matched liver metastases. Fluorescence in situ hybridization (FISH) was used to confirm some of the DNA copy number changes observed. Results: Overall patterns of DNA copy number aberrations were highly similar between primary tumors and their metastases, confirming clonality. Additional copy number aberrations in metastasis are rare and rather than recurrent they were sporadic for individual patients. The only recurrent differences between primary tumors and their metastases were two chromosomal regions, 6q21 and 8q24.21 encompassing the MYC oncogene, that coamplified in three metastases of two patients (3.2%). FISH analysis confirmed the high level co-amplification in the metastasis, which were not detected in their primary tumors. Conclusions: Primary CRC and their metastases show highly similar patterns of DNA copy number changes, additional copy number aberrations in metastasis are rare and recurrences exceptional. These observations are consistent with the hypothesis that the metastatic potential is predestined early in the development of the primary tumor. In total, 62 primary colorectal cancers, 62 matched normal specimens, and 68 matched metastases (liver, lung, ovarian, omentum and distant lymph nodes) were analyzed by high resolution array comparative genomic hybridization (array CGH).
Project description:Metastasis to the brain is rare in prostate cancer and unfortunately, incredibly lethal. We evaluated the tissue biopsies of a patient with a treatment-induced metastatic lesion to the brain of the neuroendocrine prostate cancer (NEPC) subtype. We performed genomic, transcriptomic, and proteomic characterization on the primary prostate tumor, the metastatic brain NEPC, and an additional metastatic nodule in the dura with adenocarcinoma histology. These data are the proteomics result of this patient, with three replicates for each sample (primary prostate, dura adenocarcinoma, brain NEPC).
Project description:Background & Aims: The metastatic process is complex and remains a major obstacle in the management of colorectal cancer (CRC). To gain a better insight into the biologic events driving the metastatic process we investigated genomic aberrations in a large cohort of matched CRC primaries and distant metastases from various sites. Methods: In total, 62 primary colorectal cancers, 62 matched normal specimens, and 68 matched metastases (from liver, lung, ovary, omentum, and distant lymph nodes) were analyzed by high resolution array comparative genomic hybridization (array CGH) for DNA copy number changes. Findings were validated using a publicly available dataset consisting of 21 primary tumors and matched liver metastases. Fluorescence in situ hybridization (FISH) was used to confirm some of the DNA copy number changes observed. Results: Overall patterns of DNA copy number aberrations were highly similar between primary tumors and their metastases, confirming clonality. Additional copy number aberrations in metastasis are rare and rather than recurrent they were sporadic for individual patients. The only recurrent differences between primary tumors and their metastases were two chromosomal regions, 6q21 and 8q24.21 encompassing the MYC oncogene, that coamplified in three metastases of two patients (3.2%). FISH analysis confirmed the high level co-amplification in the metastasis, which were not detected in their primary tumors. Conclusions: Primary CRC and their metastases show highly similar patterns of DNA copy number changes, additional copy number aberrations in metastasis are rare and recurrences exceptional. These observations are consistent with the hypothesis that the metastatic potential is predestined early in the development of the primary tumor.
Project description:The number of circulating tumor cells (CTCs) in metastatic prostate cancer patients provides prognostic and predictive information. However, it is the molecular characterization of CTCs that offers insight into the biology of these tumor cells in the context of personalized treatment. We performed a pilot study to evaluate the feasibility of isolation and genomic profiling of CTCs in castration-resistant prostate cancer. CTCs in 7.5 mLs of blood in 20 castration-resistant metastatic prostate cancer patients were enumerated using CellSearch. Additional 10-20 mLs of blood from 12 patients positive for CTCs were subjected to immunomagnetic enrichment and fluorescence activated cell sorting (IE/FACS) to isolate pools of ~20 CTCs. Genomic DNA of CTCs was subjected to whole genome amplification followed by gene copy number analysis via array comparative genomic hybridization (aCGH). Archival primary tumor biopsy samples available from 2 patients were also subjected to aCGH.
Project description:Androgen deprivation is the mainstay of therapy for progressive prostate cancer. Despite initial and dramatic tumor inhibition, most men eventually fail therapy and die of metastatic castration-resistant (CR) disease. Here, we characterize the profound degree of genomic alteration found in CR tumors using array CGH, gene expression arrays, and FISH. By cluster analysis, we show that the similarity of the genomic profiles from primary and metastatic tumors is driven by the patient. Using data adjusted for this similarity, we identify numerous high-frequency alterations in the CR tumors, such as 8p loss and chromosome 7 and 8q gain. By integrating array CGH and expression array data, we reveal genes whose correlated values suggest they are relevant to prostate cancer biology. We find alterations that are significantly associated with the metastases of specific organ sites, and others with CR tumors versus the tumors of patients with localized prostate cancer, not treated with androgen deprivation. Within the high-frequency sites of loss in CR metastases, we find an over-representation of genes involved in cellular lipid metabolism, including PTEN. Finally, using FISH we verify the presence of a gene fusion between TMPRSS2 and ERG suggested by chromosome-21 deletions detected by array CGH. We find the fusion in 54% of our CR tumors, and 81% of the fusion-positive tumors contain cells with multiple copies of the fusion. Our investigation lays the foundation for a better understanding of and possible therapeutic targets for CR disease, the poorly responsive and final stage of prostate cancer. The aim of this study was to characterize the genomic changes identified in a set of matched castrate-resistant primary and metastatic prostate cancers. Tumor cells were isolated by laser-capture microdissection from 14 patients, a total of 54 tumor samples. LCM capture samples were isolated from multiple metastastases from all but one patient from whom a single metastasis was available. Primary prostate tumor samples were collected from 12 patients. DNA was amplified by either ligation-mediated PCR (LMP) or WGA (Sigma-Aldrich, St. Louis, MO, USA). Reference DNA was isolated from peripheral blood from a single female individual.