RAP1A signaling in Leishmania donovani infected macrophages
Ontology highlight
ABSTRACT: Monastrol treatment of Leishmania donovani infected macrophages Macrophages were infected with Leishmania donovani and treated with monastrol to look for signalling molecules
Project description:Infection with antimony resistant (SbR) but not with sentitive (SbS) Leishmania donovani (LD) gives rise to aggressive pathology in mammalian hosts, the cause of which is far from clear. Some intracellular pathogens exploit autophagy for their own benefit. Here we show that induction of autophagy in normal macrophages (MF) by pharmacological mediators prior to infection with SbRLD (SbRLD-MF) enhanced their growth as compared to untreated MF, unlike SbSLD-MF. Autophagy was evident in SbRLD-MF from electron microscopical studies showing double membrane-bound compartment around amastigote. In SbRLD-MF there is induction of beclin 1, which forms the platform to recruit other interacting molecules to initiate autophagy. Knocking down the beclin 1 transcription factor Nrf2 and subsequent infection with SbRLD showed significantly lower organ parasites as compared to wild type BALB/c mice. Cessation of autophagy in SbRLD-MF at the later stage of infection is coupled with induction of miR-30a, whose binding to 3'UTR of beclin 1 leads to its post-transcriptional attenuation followed by rise in intracellular Ca++ and apoptosis. SbRLD mediated translocation of AP-1 transcription factor to the nucleus induce pri-miR-30a over-expression. Rise in Ca++ causes caspase 8 activtion leading to the cleavage of beclin 1 and initiation of apoptosis in SbRLD-MF. Apoptosis may favor parasite egress for cell to cell transmission. We also found that beclin 1 expression is present in splenocytes of kala-azar patients harbouring SbRLD but not SbSLD. Our results suggest that SbRLD has evolved a unique mechanism for its own benefit which explains, in part, the cause of aggressive pathology. Peritoneal exudate macrophages were isolated from mouse, grown in 60mm plates and infected with Leishmania donovani and total RNA was isolated from cells at 12, 18 and 24 hrs post infection. Leishmania infected macrophage miRNA expression signature was generated. Cells grown on 60mm plates and infected with Leishmania. The main objective of the microarray analysis of mmu-miRNA in antimony resistant and antimony sensitive Leishmania donovani infected macrophages are as follows: 1. To study how the expression of miRNA varies in either antimony resistant or antimony sensitive Leishmania infected macrophages as compared to the normal macrophages as a function of time. LPS was used as control. 2. To study the expression of those miRNAs which are differentially expressed in antimony resistant and antimony sensitive Leishmania infected macrophages at each time point post infection. 3. To identify those miRNAs which are responsible for degradation of autophagy initiating protein beclin 1 mRNA
Project description:Balb/c mice were infected with Leishmania donovani and liver mRNA expression were studied at two months post infection Total RNA was isolated from liver tissue from uninfected and two months infected mouse and whole genome microarray was performed
Project description:Murine bone marrow derived macrophages were infected with Leishmania major or Leishmania donovania promastigotes, allowed to phagocytose latex beads or not treated. Gene expression profiles were compared to identify i) the effect of Leishmania infection; ii) the differences in effects between L. major and L. donovani; and iii) the effect of pahgocytosis of latex beads.
Project description:Among the most central questions in Leishmania research is why some species remain in the skin dermis at the site of infection by the sand fly vector whereas other species migrate to visceral organs where they cause fatal visceral leishmaniasis. Although L. donovani is the species typically responsible for visceral leishmaniasis, an atypical L. donovani strain is the etiologic agent for cutaneous leishmaniasis in Sri Lanka. To identify molecular determinants for visceral disease, we have analysed the phenotype and genotype of two L. donovani clinical isolates from Sri Lanka where one isolate was derived from a cutaneous leishmaniasis patient (CL) and the other from a visceral leishmaniasis patient (VL). These isolates cause dramatically different pathology when introduced into mice; notably the CL isolate has lost the ability to survive in visceral organs while the VL isolate was highly virulent in visceral organs of BALB/c mice. Whole genome sequencing of the CL and VL isolates revealed that these genomes were very similar as there were no gene deletions and few individual gene amplifications. Indels resulting in frame shifts and loss/gain of stop codons resulted in 13 distinct pseudogenes present in each of the CL and VL isolates. There were 154 non-synonymous SNPs specific to the CL isolate and 193 non-synonymous SNPs specific to the VL isolate. Genome wide gene expression analysis revealed several transcript level differences, including the A2 virulence gene resulting in higher expression of A2 proteins in the VL isolate than in the CL isolate. Genotypic variations relevant to pathology and tropism in Leishmania can be interrogated by reverse genetics. Experimentally increasing A2 expression in the CL isolate through gene transfer significantly increased itM-bM-^@M-^Ys ability to survive in the spleen of BALB/c mice and conversely, down-regulating A2 expression in the VL isolate abrogated attenuated its survival in BALB/c mice. These observations reveal that there are relatively few genetic differences between the CL and VL isolates apart from the A2 genes, but collectively these have profound effects on human disease and experimentally infected mice. 6 Samples in total, 3 each from VL and CL causing isolates were analyzed by Splice Leader RNASeq. These three samples from each of the isolates were grown to form one of the following three lifestages, Promastigotes, Macrophage derived Amastigotes, Axenic Amastigotes.
Project description:Monocyte derived dendritic cells (MDDC) were infected with Leishmania major or Leishmania donovani parasites and collected at 4, 8, and 24 hours post-infection to analyze the differential effects those parasite species have on human host cell gene expression over time. Monocyte derived dendritic cells (MDDC) were generated from blood buffy coats collected from five anonymous healthy human donors and infected 10:1 (parasite to host cell) with Leishmania major Friedlin V1 strain or Leishmania donovani 1S strain parasites, where after 4, 8, or 24 hours total RNA was harvested from cells, cDNA generated, and hybridized to human gene transcipt expression arrays to assess differential host cell gene transcriptional expression differences relative to uninfected cells.
Project description:The mRNA expression of antimony resistant strains of Leishmania donovani was compared to the expression of the sensitive Leishmania donovani. The antimony resistant and sensitive Leishmania donovani were grown in complete M199 medium with 10% FCS and Penicillin streptomycin mixture. At stationary phase (5 day culture) cells were harvested in sterile Phosphate buffered saline and used for RNA isolation.
Project description:The kinetoplastid protozoan parasite, Leishmania donovani, is the causative agent of kala azar or visceral leishmaniasis. Kala azar is a severe form of leishmaniasis that is fatal in the majority of untreated cases. Studies on proteomic analysis of L. donovani thus far have been carried out using homology-based identification based on related Leishmania species (L. infantum, L. major and L. braziliensis) whose genomes have been sequenced. Recently, the genome of L. donovani was fully sequenced and the data became publicly available. We took advantage of the availability of its genomic sequence to carry out a more accurate proteogenomic analysis of L. donovani proteome using our previously generated dataset. This resulted in identification of 17,504 unique peptides upon database-dependent search against the annotated proteins in L. donovani. These peptides were assigned to 3999 unique proteins in L. donovani. 2296 proteins were identified in both the life stages of L. donovani, while 613 and 1090 proteins were identified only from amastigote and promastigote stages, respectively. The proteomic data was also searched against six-frame translated L. donovani genome, which led to 255 genome search-specific peptides (GSSPs) resulting in identification of 20 novel genes and correction of 40 existing gene models in L. donovani.
Project description:Autophagy has been implicated as a host defense mechanism against intracellular pathogens. However, certain intracellular pathogens such as Leishmania can manipulate the host’s autophagy to promote their survival. Recently, our findings regarding the regulation of autophagy by Leishmania donovani indicate that this pathogen induces non-classical autophagy in infected macrophages, independent of mammalian target of rapamycin complex 1 regulation. This occurs in the background of enhanced mTOR activity, which suggests the fine-tuning of autophagy to optimally promote parasite survival and may involve the sequestration or modulation of specific autophagosome-associated proteins. To investigate how Leishmania potentially manipulates the composition of host-cell autophagosomes, we undertook a quantitative proteomic study of the human monocytic cell line THP-1 following infection with L. donovani. We used stable isotope labeling by amino acid in cell culture and liquid chromatography-tandem mass spectrometry to compare expression profiles between autophagosomes isolated from THP-1 cells infected with L. donovani or treated with known autophagy inducers. Select proteomics results were validated by immunoblotting. In this study, we showed that L. donovani modulates the composition of macrophage autophagosomes during infection when compared to autophagosomes induced by either rapamycin (selective autophagy) or starvation (non-selective autophagy). Among 1787 proteins detected in Leishmania-induced autophagosomes, 146 were significantly modulated compared to the proteome of rapamycin-induced autophagosomes while 57 were significantly modulated compared to starvation-induced autophagosomes. Strikingly, 23 Leishmania proteins were also detected in the proteome of Leishmania-induced autophagosomes. Together, our data provide the first comprehensive insight into the proteome dynamics of host autophagosomes in response to Leishmania infection and demonstrate the complex relations between the host and pathogen at the molecular level.
Project description:Leishmania donovani, an intracellular protozoan parasite, is the causative agent of visceral leishmaniasis or kala-azar, the most severe form of leishmaniasis in humans. To date, our understanding of the molecular mechanisms associated with the pathogenicity of Leishmania infection is still limited. RNA interference—collectively RNA silencing pathways—participates in the regulation of various biological processes in most eukaryotic cells. Complexes of Argonaute proteins with small RNAs are core components of the RNA interference system and play a key role in silencing gene expression. It is becoming increasingly clear that several intracellular pathogens target host cell RNA interference pathways to promote their survival. In this study, we investigated the potential role of host macrophage Argonautes in Leishmania pathogenesis. Western blot analysis showed that protein abundance of infected macrophage Argonaute 1 (Ago1) was selectively and significantly higher than that of non-infected control at 24 h post-infection, suggesting that Ago1 plays a role in pathogenicity. In fact, siRNA-mediated downregulation of Ago1 enhanced Leishmania clearance from infected host cells, linking macrophage Ago1 to Leishmania virulence. To investigate the mechanisms of host Ago1 in Leishmania pathogenesis, a stable isotope labeling by amino acids in cell culture (SILAC)-based whole proteome approach was employed, which showed that expression of several previously reported Leishmania pathogenesis-related proteins were dependent on the level of macrophage Ago1. Moreover, the proteomic-based detailed biochemical analysis showed that Leishmania modulated host RNA-induced silencing complex (RISC) composition during infection, strongly suggesting macrophage RISC targeting. Strikingly, Leishmania proteins were detected as part of host RISC in infected cells. Together, our results demonstrate that Leishmania targets host RNA interference machinery to promote its survival inside the host macrophage.