Differential effects of krill oil and fish oil on the hepatic transcriptome in mice
Ontology highlight
ABSTRACT: Dietary supplementation with ω-3 polyunsaturated fatty acids (ω-3 PUFAs), specifically the fatty acids docosahexaenoic acid (DHA; 22:6 ω-3) and eicosapentaenoic acid (EPA; 20:5 ω-3), is known to have beneficial health effects including improvements in glucose and lipid homeostasis and modulation of inflammation. To evaluate the efficacy of two different sources of ω-3 PUFAs, we performed gene expression profiling in the liver of mice fed diets supplemented with either fish oil or krill oil. We found that ω-3 PUFA supplements derived from a phospholipid krill fraction (krill oil) downregulated the activity of pathways involved in hepatic glucose production as well as lipid and cholesterol synthesis. The data also suggested that krill oil-supplementation increases the activity of the mitochondrial respiratory chain. Surprisingly, an equimolar dose of EPA and DHA derived from fish oil modulated fewer pathways than a krill oil-supplemented diet and did not modulate key metabolic pathways regulated by krill oil, including glucose metabolism, lipid metabolism and the mitochondrial respiratory chain. Moreover, fish oil upregulated the cholesterol synthesis pathway, which was the opposite effect of krill supplementation. Neither diet elicited changes in plasma levels of lipids, glucose or insulin, probably because the mice used in this study were young and were fed a low fat diet. Further studies of krill oil supplementation using animal models of metabolic disorders and/or diets with a higher level of fat may be required to observe these effects. Twenty-one microarrays: three diets (CO, FO, KO) x seven mice per diet x one microarray per mouse
Project description:Dietary supplementation with ω-3 polyunsaturated fatty acids (ω-3 PUFAs), specifically the fatty acids docosahexaenoic acid (DHA; 22:6 ω-3) and eicosapentaenoic acid (EPA; 20:5 ω-3), is known to have beneficial health effects including improvements in glucose and lipid homeostasis and modulation of inflammation. To evaluate the efficacy of two different sources of ω-3 PUFAs, we performed gene expression profiling in the liver of mice fed diets supplemented with either fish oil or krill oil. We found that ω-3 PUFA supplements derived from a phospholipid krill fraction (krill oil) downregulated the activity of pathways involved in hepatic glucose production as well as lipid and cholesterol synthesis. The data also suggested that krill oil-supplementation increases the activity of the mitochondrial respiratory chain. Surprisingly, an equimolar dose of EPA and DHA derived from fish oil modulated fewer pathways than a krill oil-supplemented diet and did not modulate key metabolic pathways regulated by krill oil, including glucose metabolism, lipid metabolism and the mitochondrial respiratory chain. Moreover, fish oil upregulated the cholesterol synthesis pathway, which was the opposite effect of krill supplementation. Neither diet elicited changes in plasma levels of lipids, glucose or insulin, probably because the mice used in this study were young and were fed a low fat diet. Further studies of krill oil supplementation using animal models of metabolic disorders and/or diets with a higher level of fat may be required to observe these effects.
Project description:Since the liver is the central organ of metabolism, changes in diet have a great impact on this organ and overall on health with aging. It is well known that dietary fat source strongly influences many parameters of the hepatic mitochondria. These changes includes modification of lipid composition of mitochondrial membrane, affecting the mtETC functions, oxidative stress and mtDNA alterations. We used microarrays to detail the changes in gene expression provides by feeding lifelong on different dietary fat sources, and identified distinct classes of up and down-regulated genes during aging under different dietary conditions. Rats were fed lifelong on a normolipidic diet (4% w/w) with virgin olive, sunflower or fish oil as dietary fat source. At 6 and 24 months, animals were killed and liver were removed for RNA extraction and hybridization on Affymetrix microarrays. We sought to obtain changes in gene expression due to both aging and dietary conditions. There were 6 experimental groups (virgin olive oil at 6 months, sunflower oil at 6 months, fish oil at 6 months, virgin olive oil at 24 months, sunflower oil at 24 months and fish oil at 24 months. 3 animals were studied of each experimental group, so a total of 18 samples were analyzed.
Project description:Transcriptional profiling of adipose tissue comparing three diets with different levels of replacement of fish oil for vegetable oils. Juvenile gilthead sea bream (Sparus aurata L.) of 16 g initial mean body weight were distributed into 9 fibreglass tanks (500 l) in groups of 60 fish at the research experimental facilities of IATS. Each group received (from May 23rd to September 19th) one of the three experimental diets nominally CTRL, 66VO and VO. All diets were based on plant proteins and dietary oil was either Scandinavian FO (CTRL diet) or a blend of vegetable oils, replacing the 66% (66VO diet) and 100% (VO diet) of FO. Four samples, using a control diet (CTRL) as reference and double color hybridization and dye swap with the other two (66VO, VO)
Project description:Omega - 3 fatty acids of marine origin exert beneficial effects on lipid metabolism and can protect against insulin resistance in high fat diet (HFD)-fed animals. Simultaneously, recent studies showed that different lipid forms could have numerous consequences regarding the regulation of energy balance, nutrient absorption, and substrate metabolism. Indeed, when omega-3 was provided as triglycerides (TG, i.e. fish oil), it induced dose-dependently the expression of genes involved in lipid metabolism as well as fatty acid oxidation in small intestine of C57BL/6 mice fed various HFDs. As the underlying mechanism(s) explaining the differences in EPA/DHA bioavailability among various lipid forms of Omega-3 is not entirely clear, we performed a mouse study (n=8 per group) using purified HFDs with control HFD based on corn oil (cHF) and part of the lipids were replaced by omega-3 fish lipids in different forms: as either TG (cHF-F), marine phospholipids (PL; Krill oil, given at two different doses Krill-low (Krill-L) and Krill-high (Krill-H)), and as wax esters in the extract from the zooplankton Calanus finmarchicus (Calanus oil CAL-L representing same omega-3 levels as Krill-L diet). As a healthy control we fed a subset of mice standard chow (STD). All mice were fed their diet for 8 weeks and after sacrifice, whole small intestine was isolated, frozen and used for RNA isolation and microarray gene expression analysis using 8x60K Agilent arrays. Results showed that PL-H versus control cHFc induced specifically metabolic lipid pathways, while TG and PL-L mainly affected cytoskeleton regulation.
Project description:Krill oil is a dietary supplement derived from Antarctic krill; a small crustacean found in the ocean. Krill oil is a rich source of omega-3 fatty acids, specifically eicosapentaenoic acid and docosahexaenoic acid, as well as the antioxidant astaxanthin. The aim of this study was to investigate the effects of krill oil supplementation, compared to placebo oil (high oleic sunflower oil added astaxanthin), in vivo on energy metabolism and substrate turnover in skeletal muscle cells. Skeletal muscle cells (myotubes) were obtained before and after a 7-week krill oil or placebo oil intervention, and glucose and oleic acid metabolism and leucine accumulation, as well as effects of different stimuli in vitro, were studied in the myotubes. In vivo intervention with krill oil increased oleic acid oxidation and leucine accumulation in skeletal muscle cells, however no effects were observed on glucose metabolism. The krill oil-intervention-induced increase in oleic acid oxidation correlated negatively with changes in serum low-density lipoprotein (LDL) concentration. In addition, myotubes were also exposed to krill oil in vitro. The in vitro study revealed that 24 h of krill oil treatment increased both glucose and oleic acid metabolism, enhancing energy substrate utilization. Transcriptomic analysis comparing myotubes obtained before and after krill oil-supplementation identified differentially expressed genes associated with e.g. glycolysis/gluconeogenesis, metabolic pathways and calcium signaling pathway, while proteomic analysis demonstrated upregulation of e.g. LDL-receptor in myotubes obtained after krill oil intervention. These findings suggest that krill oil intervention promotes increased fuel metabolism and protein synthesis in human skeletal muscle cells, with potential implications for metabolic health.
Project description:Vegetable oils (VO) are possible substitutes for fish oil in aquafeeds but are limited by their lack of omega-3 (n-3) long-chain polyunsaturated fatty acids (LC-PUFA). However, oilseed crops can be modified to produce n-3 LC-PUFA such as eicosapentaenoic (EPA) and docosahexaenoic (DHA) acids, representing a potential option to fill the gap between supply and demand of these important nutrients. Camelina sativa was metabolically engineered to produce a seed oil with around 15 % total n-3 LC-PUFA to potentially substitute for fish oil in salmon feeds. Post-smolt Atlantic salmon (Salmo salar) were fed for 11-weeks with one of three experimental diets containing either fish oil (FO), wild-type Camelina oil (WCO) or transgenic Camelina oil (DCO) as added lipid source to evaluate fish performance, nutrient digestibility, tissue n-3 LC-PUFA, and metabolic impact determined by liver transcriptome analysis. The DCO diet did not affect any of the performance or health parameters studied and enhanced apparent digestibility of EPA and DHA compared to the WCO diet. The level of total n-3 LC-PUFA was higher in all the tissues of DCO-fed fish than in WCO-fed fish with levels in liver similar to those in fish fed FO. Endogenous LC-PUFA biosynthetic activity was observed in fish fed both the Camelina oil diets as indicated by the liver transcriptome and levels of intermediate metabolites such as docosapentaenoic acid, with data suggesting that the dietary combination of EPA and DHA inhibited desaturation and elongation activities. Expression of genes involved in phospholipid and triacylglycerol metabolism followed a similar pattern in fish fed DCO and WCO despite the difference in n-3 LC-PUFA contents.
Project description:New de novo sources of omega 3 (n-3) long chain polyunsaturated fatty acids (LC-PUFA) are required as alternatives to fish oil in aquafeeds in order to maintain adequate levels of the beneficial fatty acids, eicosapentaenoic and docosahexaenoic (EPA and DHA, respectively). The present study investigated the use of an EPA+DHA oil derived from a transgenic Camelina sativa in feeds for Atlantic salmon (Salmo salar) containing low levels of fishmeal (35 %) and fish oil (10 %), reflecting current commercial formulations, to determine the impacts on intestinal transcriptome, tissue fatty acid profile and health of farmed salmon. Post-smolt Atlantic salmon were fed for 12-weeks with one of three experimental diets containing either a blend of fish oil/rapeseed oil (FO), wild-type camelina oil (WCO) or transgenic camelina oil (DCO) as added lipid source. The DCO diet did not affect any of the fish performance or health parameters studied. Analyses of the mid and hindgut transcriptomes showed only mild effects on metabolism. Flesh of fish fed the DCO diet accumulated almost double the amount of n-3 LC-PUFA than fish fed the FO or WCO diets, indicating that these oils from transgenic oilseeds offer the opportunity to increase the n-3 LC-PUFA in farmed fish to levels comparable to those found twelve years ago.
Project description:The effect of different diets (i.e. fish oil based vs vegetable oil based) on liver transcription profiles over the life history stages (freshwater and marine phases) of cultured Atlantic salmon (Salmo salar) were explored. Two groups of fish were raised from first feeding on different lipid containing diets; a) the standard 100% fish oil based diet, the other enriched with a blend of vegetable oils (75%) + fish oil (25%). Liver samples were taken from fish at four time points: two freshwater phase (as parr 36 weeks post hatch (wph); as pre-smolts, 52 wph) and two marine phase ( as post-smolts 55 wph; and as adult fish , 86 wph). A total of 96 cDNA microarray hybridisations - TRAITS / SGP Atlantic salmon 17k feature cDNA microarray - were performed ( 2 diets x 4 time points x 6 biological replicates x 2 -dye swap) using a comon pooled reference contol design.
Project description:Krill oil is a dietary supplement derived from Antarctic krill; a small crustacean found in the ocean. Krill oil is a rich source of omega-3 fatty acids, specifically eicosapentaenoic acid and docosahexaenoic acid, as well as the antioxidant astaxanthin. The aim of this study was to investigate the effects of krill oil supplementation, compared to placebo oil (high oleic sunflower oil added astaxanthin), in vivo on energy metabolism and substrate turnover in skeletal muscle cells. Skeletal muscle cells (myotubes) were obtained before and after a 7-week krill oil or placebo oil intervention, and glucose and oleic acid metabolism and leucine accumulation, as well as effects of different stimuli in vitro, were studied in the myotubes. In addition, myotubes were also exposed to krill oil in vitro. The in vitro study revealed that 24 h of krill oil treatment increased both glucose and oleic acid metabolism, enhancing energy substrate utilization. In vivo intervention with krill oil increased oleic acid oxidation and leucine accumulation in skeletal muscle cells, however no effects were observed on glucose metabolism. The krill oil-intervention-induced increase in oleic acid oxidation correlated negatively with changes in serum low-density lipoprotein (LDL) concentration. Transcriptomic analysis comparing myotubes obtained before and after krill oil-supplementation identified differentially expressed genes associated with e.g. glycolysis/gluconeogenesis, metabolic pathways and calcium signaling pathway, while proteomic analysis demonstrated upregulation of e.g. LDL-receptor. These findings suggest that krill oil intervention promotes increased fuel metabolism and protein synthesis in human skeletal muscle cells, with potential implications for metabolic health.
Project description:Dietary supplementation with fish-oil modulates ruminant milk composition towards a healthier fatty acid profile for consumers, but it also causes milk fat depression (MFD). Because the dairy goat industry is mainly oriented towards cheese manufacturing, MFD can elicit economic losses. There is large individual variation in animal susceptibility with goats more (RESPO+) or less (RESPO−) responsive to diet-induced MFD. Thus, we used RNA-Seq to examine gene expression profiles in mammary cells to elucidate mechanisms underlying MFD in goats and individual variation in the extent of diet-induced MFD.