Context-Specific Regulation of NF-?B Target Gene Expression by EZH2 in Breast Cancers
Ontology highlight
ABSTRACT: Both EZH2 and NF-?B contribute to aggressive breast cancer, yet whether the two oncogenic factors have functional cross-talk in breast cancer is largely unknown. Here, we uncover an unexpected role of EZH2 in conferring the constitutive activation of NF-?B target gene expression in ER-negative basal-like breast cancer cells. This function of EZH2 is independent of its histone methyltransferase activity but requires the physical interaction with RelA/RelB to promote the expression of NF-?B targets. Intriguingly, EZH2 acts oppositely in repressing NF-?B targets in ER-positive luminal-like breast cancer cells by interacting with ER and directing repressive histone methylation. Thus, EZH2 function as a double-facet molecule in breast cancers, functioning either as a transcriptional activator or repressor of NF-?B targets, in a cell context-dependent manner. These findings reveals an additional mechanism by which EZH2 promotes breast cancer progression and also underscore the need for developing context-specific strategy for therapeutic targeting of EZH2 in breast cancers. 12 samples were analyzed including three replicates of siNC CTRL and siEZH2 CTRL.
Project description:The current study analyzed the altered expression profiles of genes that are responsible for fluvastatin-induced breast cancer cell death in MDA-MB-231 cells (ER-ve basal breast cancer cells). Some of these altered gene expressions were further inter connceted to various pathways which may eventually be recognised as drug targets/ biomarkers in statin-sensitve breast cancer patients. To understand the differential gene expression profile in fluvastatin treated (24 h) malignant breast cancer cells with untreated malignant breast cancer cells.
Project description:Overexpression of EZH2 in estrogen receptor negative (ER-) breast cancer promotes metastasis. EZH2 has been mainly studied as the catalytic component of the Polycomb Repressive Complex 2 (PRC2) that mediates gene repression by trimethylating histone H3 at lysine 27 (H3K27me3). However, how EZH2 drives metastasis despite the low H3K27me3 levels observed in ER- breast cancer is unknown. We have shown that in human invasive carcinomas and distant metastases, cytoplasmic EZH2 phosphorylated at T367 is significantly associated with ER- disease and low H3K27me3 levels. Here, we explore the interactome of EZH2 and of a phosphodeficient mutant EZH2_T367A. We identified novel interactors of EZH2, and identified interactions that are dependent on the phosphorylation and cellular localization of EZH2 that may play a role in EZH2 dependent metastatic progression.
Project description:The current study analyzed the metadherin (MTDH)-mediated altered gene expression profiles in ER negative MDA-MB-231 cells. Some of these altered gene expressions were further inter connected to various pathways which may eventually be recognized as drug targets or biomarkers in those breast cancers where MTDH plays a role in cancer progression/metastasis. To understand the global differential gene expression profile in MTDH-wild type and a newly identified MTDH-isoform knock down in metastatic breast cancer cells. This data was compared to untreated breast cancer cells.
Project description:Notch signaling is frequently hyperactivated in breast cancer, but how the enhanced signaling contributes to the tumor process is less well understood. In this report, we identify the proinflammatory cytokine interleukin-6 (IL-6) as a novel Notch target in breast tumor cells. Enhanced Notch signaling upregulated IL-6 expression at the transcriptional level, leading to activation of autocrine and paracrine JAK/STAT signaling. IL-6 upregulation was mediated by non-canonical Notch signaling, as it could be effectuated by a cytoplasmically localized Notch intracellular domain and was independent on the DNA-binding protein CSL. Instead, Notch-mediated IL-6 upregulation was controlled by two other factors: IKKβ, a protein in the NF-kB signaling cascade, and p53. Activation of IL-6 by Notch required IKKβ function, but interestingly, did not engage canonical NF-κB signaling, in contrast to IL-6 activation by inflammatory agents such as tumor necrosis factor, which requires canonical NF-κB signaling. With regard to p53 status, IL-6 expression was upregulated by Notch when p53 was mutated or lost, but restoring wildtype 53 into p53-mutated or -deficient cells abrogated the IL-6 upregulation. Furthermore, Notch-induced genome-wide transcriptomes from p53 wildtype and -mutated breast tumor cell lines differed extensively, and in a subset of genes upregulated by Notch in a p53-mutant cell line, upregulation was reduced by wildtype p53. In conclusion, we identify IL-6 as a novel non-canonical Notch target gene, and reveal roles for p53 and IKKβ in non-canonical Notch signaling in breast cancer and in the generation of cell context-dependent diversity in the Notch signaling output. 30 microarray samples consisting of MCF7 (ER+, wild-type p53, luminal type B breast cancer) and MDA-MB-231 (ER-, mutated p53, basal breast cancer) cells cultured on immobilized 1 μg/ml JAGGED1-Fc or 1 μg/ml DLL4-Fc or 1 μg/ml Fc control with or without 5 μM DAPT for 6 hours in 3 biological replicates.
Project description:We used a genome-wide approach (High-throughput sequencing of RNA isolated by crosslinking immunoprecipitation, or HITS-CLIP) to define direct miRNA-mRNA interactions in three breast cancer subtypes (estrogen receptor positive, Her2 amplified and triple negative). Focusing on steroid receptor signaling, we identified two novel regulators of the ER pathway (miR-9-5p and miR-193a/b-3p), which together target multiple genes involved in ER signaling. Moreover, this approach enabled the definition of miR-9-5p as a global regulator of steroid receptor signaling in breast cancer. Finally, we show that miRNA targets and networks defined by our analysis are predictive of patient outcomes and provide global insight into miRNA regulation in breast cancer. Argonaute HITS-CLIP on three representative breast cancer cell lines (each in triplicate).
Project description:Large intervening noncoding RNAs (lincRNAs) are pervasively transcribed in the genome yet their potential involvement in human disease is not well understood4,5. Recent studies of dosage compensation, imprinting, and homeotic gene expression suggest that individual lincRNAs can function as the interface between DNA and specific chromatin remodeling activities. Here we show that lincRNAs in the HOX loci become systematically dysregulated during breast cancer progression. The lincRNA termed HOTAIR is increased in expression in primary breast tumors and metastases, and HOTAIR expression level in primary tumors is a powerful predictor of eventual metastasis and death. Enforced expression of HOTAIR in epithelial cancer cells induced genome-wide re-targeting of Polycomb Repressive Complex 2 (PRC2) to an occupancy pattern more resembling embryonic fibroblasts, leading to altered histone H3 lysine 27 methylation, gene expression, and increased cancer invasiveness and metastasis in a manner dependent on PRC2. Conversely, loss of HOTAIR can inhibit cancer invasiveness, particularly in cells that possess excessive PRC2 activity. These findings suggest that lincRNAs play active roles in modulating the cancer epigenome and may be important targets for cancer diagnosis and therapy. Comparision of MDA-MB-231 Breast Cancer Cells expressing vector or HOTAIR. Each cell line was subjected to ChIP-chip with anti-H3K27, SUZ12, and EZH2 and interrogated on whole genome promoter arrays
Project description:NF-kB has been linked to doxorubicin-based chemotherapy resistance in breast cancer patients. NF-kB nuclear translocation and DNA binding in doxorubicin treated-breast cancer cells have been extensively examined, however its functional consequences in terms the spectrum of NF-kB -dependent genes expressed and, thus, the impact on tumour cell behaviour are unclear. We hypothesized that NF-kB gene expression profile induced by doxorubicin might be different among breast cancer cells and tumors. Doxorubicin treatment in the p53-mutated MDA-MB-231 cells resulted in NF-kB driven-gene transcription demonstrated by gene expression microarrays. Selected genes (ICAM-1, CXCL1, IL8) related with invasion, metastasis and chemoresistance expression were confirmed by RT-PCR in a subset of additional doxorubicin-treated cells and fresh primary human breast tumors. In both systems, p53-deficient background correlated with the activation of these NF-kB targeted genes. Overexpression of p53WT in the mutant p53 MDA-MB-231 cells impaired NF-kB driven transcription induced by doxorubicin. Moreover, tumors with a p53 deficient background and nuclear NF-kB /p65 expression correlated with reduced disease free-survival. This study supports that tumor molecular profiles for doxorubicin driven NF-kB-response are likely to exist. A link between p53 deficiency and the presence of active transcriptionally NF-kB could favour an aggressive behaviour and might have implications for doxorubicin-based chemotherapy in breast tumors exhibiting aberrant p53 activity 12 samples were analyzed: controls (n=3); Doxorubicin treated (n=3); MLN120B treated (n=3); MLN120B + Doxorubicin treated (n=3)
Project description:Background: In previous work we discovered that T lymphocytes play a prominent role in the rise of brain metastases of ER-negative breast cancers. In the present study we explored expressional changes due to T cell contact associated with penetration through the BBB for breast cancer cell lines derived from cancers with various affinities for brain. Methods: Differential expression of proteins was identified by comparing the proteomes of the breast cancer cells before and after co-culture with T cells by using liquid chromatography-mass spectrometry (LC-MS). siRNA was used to silence protein expression in the tumor cells and the artificial BBB model was employed to study the effects on passage of the breast carcinoma cell lines. Results: Mass spectrometry-based proteomics revealed significant alterations in the expression of 35 proteins by the breast cancer cell lines upon T cell contact. Among the proteins is coronin-1A, a protein related to cell motility. Knockdown of CORO1A in the breast cancer cells reduced their ability to cross the artificial BBB to 60%. The effects were significantly less for the cell line derived from breast cancer with affinity for brain. The expression of coronin-1A was confirmed by immunohistochemistry and RT-PCR of 52 breast cancer samples of patients with metastasized breast cancers, with and without brain locations. Lastly, CORO1A upregulation was validated in a publicly available mRNA expression database from 204 primary breast cancers with known metastatic sites. Conclusions: We conclude that T lymphocytes trigger cancer cells to express proteins including coronin-1A thereby facilitating their passage through an in vitro BBB. In addition, a prominent role of coronin-1A in the formation of cerebral metastases in breast cancer patients is strongly suggestive by its upregulation in tissue samples of breast cancer patients with brain metastases.
Project description:Tumor infiltrating lymphocytes (TILs) play a critical role in modulating the immunoediting features in certain malignancies like triple negative breast cancer (TNBC). Nevertheless, much is still unknown concerning the specific responses of tumors when challenged by lymphocyte infiltration. Based on this void, we conducted a immuno-phenotype comparison using mRNA sequencing between the TNBC cell line MDA-MB-231 and the luminal breast cancer cell line MCF7 after both were co-cultured with activated human T-cells. We found that, though the cytokine-induced immune signature of the two cell lines was similar, MDA-MD-231 cells were able to transcribe IDO1 at a significantly higher level than MCF7 cells. Though no differences occurred in upstream JAK/STAT1 signaling or IDO1 mRNA stability between the two cell lines, stimulation with IFNγ was able to differentially induce IDO protein expression and enzymatic activity in ER- cell lines compared to ER+ cell lines. Further experiments show that 5-aza-deoxycytidine treatment was able to reverse suppression of IDO1 expression in MCF7 cells, suggesting DNA methylation as a potential determinant in IDO1 induction. By analyzing TCGA breast cancer datasets, we discovered subtype-specific mRNA and promoter methylation differences in IDO1, with TNBC/basal subtypes exhibiting lower methylation/higher expression and ER+/luminal subtypes exhibiting higher methylation/lower expression. We confirmed this trend of IDO1 methylation by bisulfite pyrosequencing breast cancer cell lines and an independent cohort of primary breast tumors. Taken together, these findings suggest that IDO1 methylation regulates anti-immune responses in breast cancer subtypes and could be used as a predictive biomarker for IDO inhibitor-based immunotherapy. To determine the immunomodulatory effects of cytokines secreted by activated human T-cells on breast cancer cells, we performed RNAseq analysis in MCF7 and MDA-MB-231 cells, after co-culturing them with normal PBMCs activated with anti-CD3/CD28 antibodies in a contact-independent manner. MDA-MB-231 or MCF7 cells were co-cultured with PBMCs alone or the conditioned-media or a combination of both for 24 hrs, and then total RNA was harvest for RNA-seq analysis.
Project description:The origin and the contribution of breast tumor heterogeneity to its progression are not clear. We investigated the effect of a growing orthotopic tumor formed by an aggressive estrogen receptor (ER)-negative breast cancer cell line on the metastatic potential of a less aggressive ER-positive breast cancer cell line for the elucidation of how the presence of heterogeneous cancer cells might affect each other’s metastatic behavior. ER positive ZR-75-1/GFP/puro cells, resistant to puromycin and non-tumorigenic/non-metastatic without exogenous estrogen supplementation, were injected intracardiacally into mice bearing growing orthotopic tumors, formed by ER negative MDA-MB-231/GFP/Neo cells resistant to G418. A variant cell line B6, containing both estrogen-dependent and -independent cells, were isolated from GFP expressing cells in the bone marrow and re-inoculated in nude mice to generate an estrogen-independent cell line B6TC.