Metabolomics,Unknown,Transcriptomics,Genomics,Proteomics

Dataset Information

0

The Histone Methyltransferase Wbp7 Controls Macrophage Function through GPI Glycolipid Anchor Synthesis. [ChIP_seq]


ABSTRACT: Histone methyltransferases catalyze site-specific deposition of methyl groups, enabling recruitment of transcriptional regulators. In mammals, trimethylation of lysine 4 in histone H3, a modification localized at the transcription start sites of active genes, is catalyzed by six enzymes (SET1a and SET1b, MLL1M-bM-^@M-^SMLL4) whose specific functions are largely unknown. By using a genomic approach, we found that in macrophages, MLL4 (also known as Wbp7) was required for the expression of Pigp, an essential component of the GPI-GlcNAc transferase, the enzyme catalyzing the first step of glycosylphosphatidylinositol (GPI) anchor synthesis. Impaired Pigp expression in Wbp7-/- macrophages abolished GPI anchor-dependent loading of proteins on the cell membrane. Consistently, loss of GPI-anchored CD14, the coreceptor for lipopolysaccharide (LPS) and other bacterial molecules, markedly attenuated LPS-triggered intracellular signals and gene expression changes. These data link a histone-modifying enzyme to a biosynthetic pathway and indicate a specialized biological role for Wbp7 in macrophage function and antimicrobial response. Chromatin immuno-precipitations of H3 histone try-methylated on lysine 4 followed by multiparallel sequencing performed in murine bone marrow-derive macrophages (BMDM). Experiments carried out in untreated cells as well as in cells treated for 4hrs with lipopolysaccharide (LPS), for both Wbp7+/- (HET) and Wbp7-/- (KO) mice.

ORGANISM(S): Mus musculus

SUBMITTER: Iros Barozzi 

PROVIDER: E-GEOD-30972 | biostudies-arrayexpress |

REPOSITORIES: biostudies-arrayexpress

altmetric image

Publications

The histone methyltransferase Wbp7 controls macrophage function through GPI glycolipid anchor synthesis.

Austenaa Liv L   Barozzi Iros I   Chronowska Agnieszka A   Termanini Alberto A   Ostuni Renato R   Prosperini Elena E   Stewart A Francis AF   Testa Giuseppe G   Natoli Gioacchino G  

Immunity 20120405 4


Histone methyltransferases catalyze site-specific deposition of methyl groups, enabling recruitment of transcriptional regulators. In mammals, trimethylation of lysine 4 in histone H3, a modification localized at the transcription start sites of active genes, is catalyzed by six enzymes (SET1a and SET1b, MLL1-MLL4) whose specific functions are largely unknown. By using a genomic approach, we found that in macrophages, MLL4 (also known as Wbp7) was required for the expression of Pigp, an essentia  ...[more]

Similar Datasets

2012-04-08 | E-GEOD-30971 | biostudies-arrayexpress
2012-04-09 | GSE30972 | GEO
2012-04-09 | GSE30971 | GEO
2013-01-17 | E-GEOD-38377 | biostudies-arrayexpress
2012-04-08 | E-GEOD-30973 | biostudies-arrayexpress
2010-03-05 | E-GEOD-19553 | biostudies-arrayexpress
2015-01-30 | E-GEOD-56121 | biostudies-arrayexpress
2015-11-09 | E-GEOD-66951 | biostudies-arrayexpress
2021-07-28 | GSE169623 | GEO
2012-07-08 | E-GEOD-33163 | biostudies-arrayexpress