Expression data from Aspergillus niger comparing aerial structures with vegetative mycelium
Ontology highlight
ABSTRACT: A. niger undergoes dramatic changes during asexual development. We tried to identify the differences in RNA expression levels that are important for this development. We used micro-arrays to determine which genes were up- or down-regulated in the aerial structures, the part of the colony that is formed during asexual development. A. niger was grown as a sandwiched culture (Wösten et al., 1991,Journal of General Microbiology 137: 2017–2023) in a 0.25 mm layer of 0.6 % agarose between two porous polycarbonate membranes (diameter 76 mm, pore size 0.1 µm; Profiltra; www.profiltra.nl). After six days of growth, the top membrane of the sandwich was replaced by a membrane with pores of 10 µm (Profiltra), allowing formation of aerial hyphae and conidiophores for 24 h. Vegetative mycelium and aerial structures of 7-day-old maltose-grown cultures of A. niger were harvested from 3 and 5 sandwiched colonies, respectively. The aerial structures were scraped from the top membrane of the sandwiched culture with a razor blade. From other colonies, vegetative mycelium was harvested by flipping over the top membrane and scraping it off with a razor blade.
Project description:A. niger undergoes dramatic changes during asexual development. We tried to identify the differences in RNA expression levels that are important for this development. We used micro-arrays to determine which genes were up- or down-regulated in the aerial structures, the part of the colony that is formed during asexual development.
Project description:This work presents an exploration of submerged differentiation of the ubiquitous saprophyte and industrially important fungus, Aspergillus niger, in response to a limited availability of a sole carbon and energy source, maltose. In aspergilli and other mold fungi, asexual reproduction through formation of elaborate conidiogenic structures normally requires an aerial interface. This requirement is bypassed in submerged culture in response to severe nutrient limitation. Continuous cultures with cell retention (retentostat cultures) were applied to generate a fundamental physiological state, where the specific growth rate approaches zero, as the density of the cell population adapts to the supply of the limiting energy source. Temporal differentiation of mycelium structure and commitment to asexual reproduction were major phenomena, apparent on biochemical, morphological, physiological, and transcriptomic level. The severe substrate limitation had a rapid negative impact on cytoplasmic processes, and promoted endo- and exogenous nutrient mobilization, and hyphal compartmentalisation. The first conidiogenic structures appeared after one day with little additional differentiation until Day 4 to 6, where a transition to full commitment to reproductive growth took place. Submerged conidiation in A. niger involved transcriptional regulation of homologs of the regulatory pathway, centered around the Bristle gene (brlA), and structural genes previously described in other aspergilli. Comparison of transcriptomes, revealed a number of co-regulated gene clusters, which appear to encode secondary metabolite biosynthetic potential. We discuss the concept of maintenance energy in the context of differentiation, a possible physiological trigger for sporulation and the special physiological adaptations of the starved mycelium. We also present a simple and efficient method for in situ retention of filamentous organisms. The dataset consists of 9 Affymetrix arrays derived from defined growth conditions of lab-scale bioreactor cultures (5L). Total RNA was extracted from biomass harvested at three different growth phases: exponential growth phase, 2 and 8 days of retentostat cultivation. For each of the phases, the data is derived from three biological replicates.
Project description:This work presents an exploration of submerged differentiation of the ubiquitous saprophyte and industrially important fungus, Aspergillus niger, in response to a limited availability of a sole carbon and energy source, maltose. In aspergilli and other mold fungi, asexual reproduction through formation of elaborate conidiogenic structures normally requires an aerial interface. This requirement is bypassed in submerged culture in response to severe nutrient limitation. Continuous cultures with cell retention (retentostat cultures) were applied to generate a fundamental physiological state, where the specific growth rate approaches zero, as the density of the cell population adapts to the supply of the limiting energy source. Temporal differentiation of mycelium structure and commitment to asexual reproduction were major phenomena, apparent on biochemical, morphological, physiological, and transcriptomic level. The severe substrate limitation had a rapid negative impact on cytoplasmic processes, and promoted endo- and exogenous nutrient mobilization, and hyphal compartmentalisation. The first conidiogenic structures appeared after one day with little additional differentiation until Day 4 to 6, where a transition to full commitment to reproductive growth took place. Submerged conidiation in A. niger involved transcriptional regulation of homologs of the regulatory pathway, centered around the Bristle gene (brlA), and structural genes previously described in other aspergilli. Comparison of transcriptomes, revealed a number of co-regulated gene clusters, which appear to encode secondary metabolite biosynthetic potential. We discuss the concept of maintenance energy in the context of differentiation, a possible physiological trigger for sporulation and the special physiological adaptations of the starved mycelium. We also present a simple and efficient method for in situ retention of filamentous organisms.
Project description:Interaction of microbes affects the growth, metabolism and differentiation of members of the community. While direct and indirect competitions, like spite and nutrient consumption have negative effect on each other, microbes also evolved in nature not only to fight, but in some cases to adapt or support each other while increasing the fitness of the community. Presence of bacteria and fungi in the soil results in interactions and various examples were described, including mutualism. Bacilli attach to the plant root and form complex communities in the rhizosphere. Bacillus subtilis, when grown in the presence of Aspergillus niger interacts with the fungal partner, attaches and grows on the hyphae. Using dual transcriptome experiment, we show that both fungi and bacteria alter their metabolisms during the interaction. Interestingly, the transcription of genes related to the antifungal and antibacterial defense mechanism of B. subtilis and A. niger, respectively, are decreased upon attachment of bacteria to the mycelia. Our microarray experiments provide a novel insight into the mutual interaction of a bacterium and a fungus. Aspergillus niger were grown with and without Bacillus subtilis. Biological triplicates were made for both conditions, Affymetrix microarray experiments were performed on these samples.
Project description:The genome of the filamentous fungus Aspergillus niger is rich in genes encoding pectinases, a broad class of enzymes that have been extensively studied due to their use in industrial applications. The sequencing of the A. niger genome provided more knowledge concerning the individual pectinolytic genes, but relatively little is still known about the regulatory genes involved in pectin degradation. Understanding regulation of the pectinolytic genes provides a tool to optimize the production of pectinases in this industrially important fungus. This study describes the identification and characterization of one of the activators of pectinase-encoding genes, RhaR. Inactivation of the gene encoding this regulator resulted in down-regulation of genes involved in the release and catabolism of L-rhamnose from the pectinolytic substructure rhamnogalacturonan I. We aim to discover differencial expressed genes in A.niger wild type strain N402 and M-NM-^TrhaR mutant while growing on rhamnose as carbon source. Biological duplicates were made for both strain at the growth of 2 hours, Affymetrix microarray experiments were performed on these samples.
Project description:This SuperSeries is composed of the following subset Series: GSE37758: Aspergillus niger : Control (fructose) vs. steam-exploded sugarcane induction (SEB) GSE37760: Aspergillus niger : Control (fructose) vs. xylose + arabinose (XA) Refer to individual Series
Project description:This approach aims at searching unidentified regulatory roles of the AreB transcription factor in the overall carbon metabolism of A. niger. A full areB gene deletion mutant was constructed and characterized in A. niger ATCC 1015. Both strains were grown on glucose or glycerol using ammonia as nitrogen source in batch cultivations and the transcriptome was analyzed using three biological replicated transcriptome experiments. Two areB gene deletion replicates, one on glucose and one on glycerol were discarded due to bad quality and therefore not included in the analysis. Samples for RNA extraction were collected and further processed for hybridization in custom designed Affymetrix microarrays containing probes for three Aspergillus species including A. niger. Triplicate batch fermentations with the two Aspergillus niger strains used, the wild type A. niger strain ATCC 1015 and the areB complete gene deletion strain were carried out and transcriptome analysis was performed. Biomass from each batch cultivation was harvested in the exponential phase of growth and further processed for RNA extraction and hybridization on Affymetrix microarrays.
Project description:Expression data from batch cultivations of Aspergillus niger wild type strain ATCC 1015 and adrA, facB and creA deletion mutants constructed on ATCC 1015 background strain with glucose or glycerol as carbon sources. Genome-wide transcriptome analysis was used to identify genes either affected directly or indirectly by each transcription factor investigated during growth on a repressing or a derepressing carbon source. For this purpose, batch cultivations under well-controlled conditions were performed with Aspergillus niger wild type strain ATCC 1015 and the three deletion mutants of the corresponding transcription factors AdrA, FacB and CreA. Samples for RNA extraction were collected and further processed for hybridization in custom-designed Affymetrix microarrays containing probes for three Aspergillus species, including A. niger. Triplicate batch fermentations of each of the four Aspergillus niger strains used, the wild type A. niger strain ATCC 1015 and three gene deletion mutants, were carried out using glucose or glycerol as carbon source, and transcriptome analysis was performed. Biomass from each batch cultivation was harvested in the exponential phase of growth and further processed for RNA extraction and hybridization on Affymetrix microarrays.
Project description:Fungi are an important source of enzymes for saccharification of plant polysaccharides and production of biofuels. Understanding of the regulation and induction of expression of genes encoding these enzymes is still incomplete. To explore the induction mechanism, we analysed the response of the industrially important fungus Aspergillus niger to wheat straw, with a focus on events occurring shortly after exposure to the substrate. RNA sequencing showed that over a third of the genes induced after 6 h of exposure to wheat straw were also induced during 6 h of carbon starvation, indicating that carbon starvation is probably an important factor in the early response to wheat straw. The up-regulation of the expression of a high number of genes encoding CAZymes that are active on plant-derived carbohydrates during early carbon starvation suggests that these enzymes could be involved in a scouting role during starvation, releasing inducing sugars from complex plant polysaccharides. Eight samples in total consisting of duplicate shake flask Aspergillus niger cultures from four conditions: 48h glucose, 6 h starvation, 6 h wheat straw, 24 h starvation